Metamath Proof Explorer


Theorem fdiagfn

Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fdiagfn.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝐼 × { 𝑥 } ) )
Assertion fdiagfn ( ( 𝐵𝑉𝐼𝑊 ) → 𝐹 : 𝐵 ⟶ ( 𝐵m 𝐼 ) )

Proof

Step Hyp Ref Expression
1 fdiagfn.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝐼 × { 𝑥 } ) )
2 fconst6g ( 𝑥𝐵 → ( 𝐼 × { 𝑥 } ) : 𝐼𝐵 )
3 2 adantl ( ( ( 𝐵𝑉𝐼𝑊 ) ∧ 𝑥𝐵 ) → ( 𝐼 × { 𝑥 } ) : 𝐼𝐵 )
4 elmapg ( ( 𝐵𝑉𝐼𝑊 ) → ( ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵m 𝐼 ) ↔ ( 𝐼 × { 𝑥 } ) : 𝐼𝐵 ) )
5 4 adantr ( ( ( 𝐵𝑉𝐼𝑊 ) ∧ 𝑥𝐵 ) → ( ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵m 𝐼 ) ↔ ( 𝐼 × { 𝑥 } ) : 𝐼𝐵 ) )
6 3 5 mpbird ( ( ( 𝐵𝑉𝐼𝑊 ) ∧ 𝑥𝐵 ) → ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵m 𝐼 ) )
7 6 1 fmptd ( ( 𝐵𝑉𝐼𝑊 ) → 𝐹 : 𝐵 ⟶ ( 𝐵m 𝐼 ) )