Step |
Hyp |
Ref |
Expression |
1 |
|
fdiagfn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) |
2 |
|
fconst6g |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) |
4 |
|
elmapg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) ) |
6 |
3 5
|
mpbird |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
7 |
6 1
|
fmptd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐵 ⟶ ( 𝐵 ↑m 𝐼 ) ) |