| Step | Hyp | Ref | Expression | 
						
							| 1 |  | feu | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ∃! 𝑦  ∈  𝐵 〈 𝑋 ,  𝑦 〉  ∈  𝐹 ) | 
						
							| 2 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 3 | 2 | anim1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐹  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) ) | 
						
							| 5 |  | fnopfvb | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  =  𝑦  ↔  〈 𝑋 ,  𝑦 〉  ∈  𝐹 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑋 )  =  𝑦  ↔  〈 𝑋 ,  𝑦 〉  ∈  𝐹 ) ) | 
						
							| 7 | 6 | reubidva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ∃! 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑋 )  =  𝑦  ↔  ∃! 𝑦  ∈  𝐵 〈 𝑋 ,  𝑦 〉  ∈  𝐹 ) ) | 
						
							| 8 | 1 7 | mpbird | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ∃! 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑋 )  =  𝑦 ) |