Step |
Hyp |
Ref |
Expression |
1 |
|
fdmfisuppfi.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) |
2 |
|
fdmfisuppfi.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
3 |
|
fdmfisuppfi.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
4 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
5 |
1 2 3
|
fdmfisuppfi |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
6 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
7 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin ) → 𝐹 ∈ V ) |
8 |
6 2 7
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
9 |
|
isfsupp |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) ) |
10 |
8 3 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) ) |
11 |
4 5 10
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |