| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f0dom0 | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  ( 𝑋  =  ∅  ↔  𝐹  =  ∅ ) ) | 
						
							| 2 | 1 | necon3bid | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  ( 𝑋  ≠  ∅  ↔  𝐹  ≠  ∅ ) ) | 
						
							| 3 | 2 | biimpa | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑋  ≠  ∅ )  →  𝐹  ≠  ∅ ) | 
						
							| 4 |  | feq3 | ⊢ ( 𝑌  =  ∅  →  ( 𝐹 : 𝑋 ⟶ 𝑌  ↔  𝐹 : 𝑋 ⟶ ∅ ) ) | 
						
							| 5 |  | f00 | ⊢ ( 𝐹 : 𝑋 ⟶ ∅  ↔  ( 𝐹  =  ∅  ∧  𝑋  =  ∅ ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( 𝐹 : 𝑋 ⟶ ∅  →  𝑋  =  ∅ ) | 
						
							| 7 | 4 6 | biimtrdi | ⊢ ( 𝑌  =  ∅  →  ( 𝐹 : 𝑋 ⟶ 𝑌  →  𝑋  =  ∅ ) ) | 
						
							| 8 |  | nne | ⊢ ( ¬  𝑋  ≠  ∅  ↔  𝑋  =  ∅ ) | 
						
							| 9 | 7 8 | imbitrrdi | ⊢ ( 𝑌  =  ∅  →  ( 𝐹 : 𝑋 ⟶ 𝑌  →  ¬  𝑋  ≠  ∅ ) ) | 
						
							| 10 |  | imnan | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌  →  ¬  𝑋  ≠  ∅ )  ↔  ¬  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑋  ≠  ∅ ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝑌  =  ∅  →  ¬  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑋  ≠  ∅ ) ) | 
						
							| 12 | 11 | necon2ai | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑋  ≠  ∅ )  →  𝑌  ≠  ∅ ) | 
						
							| 13 | 3 12 | jca | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑋  ≠  ∅ )  →  ( 𝐹  ≠  ∅  ∧  𝑌  ≠  ∅ ) ) |