Step |
Hyp |
Ref |
Expression |
1 |
|
fdvposlt.d |
⊢ 𝐸 = ( 𝐶 (,) 𝐷 ) |
2 |
|
fdvposlt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
3 |
|
fdvposlt.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
4 |
|
fdvposlt.f |
⊢ ( 𝜑 → 𝐹 : 𝐸 ⟶ ℝ ) |
5 |
|
fdvposlt.c |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) ) |
6 |
|
fdvnegge.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
7 |
|
fdvnegge.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 0 ) |
8 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
9 |
8
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → - ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
10 |
9
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) |
11 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
12 |
11
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
13 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
14 |
13 8
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
15 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ V ) |
16 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
18 |
|
cncff |
⊢ ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
20 |
19
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑦 ∈ 𝐸 ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
21 |
17 20
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐸 ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
22 |
12 14 15 21
|
dvmptneg |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
23 |
19
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
24 |
23
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
25 |
24
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) |
26 |
|
ssid |
⊢ ℂ ⊆ ℂ |
27 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) ) |
28 |
13 26 27
|
mp2an |
⊢ ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) |
29 |
28 5
|
sselid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℂ ) ) |
30 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
31 |
30
|
negfcncf |
⊢ ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℂ ) → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℂ ) ) |
32 |
29 31
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℂ ) ) |
33 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℂ ) ) → ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℝ ) ↔ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) ) |
34 |
13 32 33
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℝ ) ↔ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) ) |
35 |
25 34
|
mpbird |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℝ ) ) |
36 |
22 35
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ∈ ( 𝐸 –cn→ ℝ ) ) |
37 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
38 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
40 |
1 2 3
|
fct2relem |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 ) |
41 |
39 40
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐸 ) |
42 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
43 |
37 42
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
44 |
43
|
le0neg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 0 ↔ 0 ≤ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
45 |
7 44
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
46 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
47 |
46
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) |
48 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
50 |
49
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
51 |
50
|
negeqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
52 |
43
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
53 |
48 51 42 52
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
54 |
47 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
55 |
45 54
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) |
56 |
1 2 3 10 36 6 55
|
fdvposle |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) ≤ ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) ) |
57 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) |
58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
60 |
59
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐴 ) ) |
61 |
4 2
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
62 |
61
|
renegcld |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
63 |
57 60 2 62
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
64 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
65 |
64
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
66 |
65
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐵 ) ) |
67 |
4 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
68 |
67
|
renegcld |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
69 |
57 66 3 68
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) = - ( 𝐹 ‘ 𝐵 ) ) |
70 |
56 63 69
|
3brtr3d |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐴 ) ≤ - ( 𝐹 ‘ 𝐵 ) ) |
71 |
67 61
|
lenegd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ - ( 𝐹 ‘ 𝐴 ) ≤ - ( 𝐹 ‘ 𝐵 ) ) ) |
72 |
70 71
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐹 ‘ 𝐴 ) ) |