Step |
Hyp |
Ref |
Expression |
1 |
|
fdvposlt.d |
⊢ 𝐸 = ( 𝐶 (,) 𝐷 ) |
2 |
|
fdvposlt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
3 |
|
fdvposlt.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
4 |
|
fdvposlt.f |
⊢ ( 𝜑 → 𝐹 : 𝐸 ⟶ ℝ ) |
5 |
|
fdvposlt.c |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) ) |
6 |
|
fdvposle.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
7 |
|
fdvposle.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
8 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
10 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
12 |
|
cncff |
⊢ ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
15 |
1 2 3
|
fct2relem |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 ) |
16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
17 |
14 16
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
18 |
|
ioossre |
⊢ ( 𝐶 (,) 𝐷 ) ⊆ ℝ |
19 |
1 18
|
eqsstri |
⊢ 𝐸 ⊆ ℝ |
20 |
19 2
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
21 |
19 3
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
22 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
23 |
|
ssid |
⊢ ℂ ⊆ ℂ |
24 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
25 |
22 23 24
|
mp2an |
⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
26 |
13 15
|
feqresmpt |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
27 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 → ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) ) |
28 |
15 5 27
|
sylc |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
29 |
26 28
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
30 |
25 29
|
sselid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
31 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
32 |
20 21 30 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
33 |
9 11 17 32
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
34 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
35 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
36 |
35 16
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
37 |
34 36
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
38 |
33 37 7
|
itgge0 |
⊢ ( 𝜑 → 0 ≤ ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) d 𝑥 ) |
39 |
|
fss |
⊢ ( ( 𝐹 : 𝐸 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐸 ⟶ ℂ ) |
40 |
4 22 39
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝐸 ⟶ ℂ ) |
41 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) ) |
42 |
22 23 41
|
mp2an |
⊢ ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) |
43 |
42 5
|
sselid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℂ ) ) |
44 |
1 2 3 6 40 43
|
ftc2re |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
45 |
38 44
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
46 |
4 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
47 |
4 2
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
48 |
46 47
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ↔ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐵 ) ) ) |
49 |
45 48
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐵 ) ) |