Step |
Hyp |
Ref |
Expression |
1 |
|
fdvposlt.d |
⊢ 𝐸 = ( 𝐶 (,) 𝐷 ) |
2 |
|
fdvposlt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
3 |
|
fdvposlt.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
4 |
|
fdvposlt.f |
⊢ ( 𝜑 → 𝐹 : 𝐸 ⟶ ℝ ) |
5 |
|
fdvposlt.c |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) ) |
6 |
|
fdvposlt.lt |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
7 |
|
fdvposlt.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
8 |
|
ioossre |
⊢ ( 𝐶 (,) 𝐷 ) ⊆ ℝ |
9 |
1 8
|
eqsstri |
⊢ 𝐸 ⊆ ℝ |
10 |
9 2
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
11 |
9 3
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
12 |
10 11
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
13 |
6 12
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
14 |
10 11 6
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
15 |
|
volioo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
16 |
10 11 14 15
|
syl3anc |
⊢ ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
17 |
13 16
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
18 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
20 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
22 |
|
cncff |
⊢ ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
23 |
5 22
|
syl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
25 |
1 2 3
|
fct2relem |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 ) |
26 |
25
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
27 |
24 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
28 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
29 |
|
ssid |
⊢ ℂ ⊆ ℂ |
30 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
31 |
28 29 30
|
mp2an |
⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
32 |
23 25
|
feqresmpt |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
33 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 → ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) ) |
34 |
25 5 33
|
sylc |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
35 |
32 34
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
36 |
31 35
|
sselid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
37 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
38 |
10 11 36 37
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
39 |
19 21 27 38
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
40 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
41 |
19
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
42 |
41 26
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
43 |
40 42
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
44 |
|
elrp |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ+ ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
45 |
43 7 44
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ+ ) |
46 |
17 39 45
|
itggt0 |
⊢ ( 𝜑 → 0 < ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) d 𝑥 ) |
47 |
|
fss |
⊢ ( ( 𝐹 : 𝐸 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐸 ⟶ ℂ ) |
48 |
4 28 47
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝐸 ⟶ ℂ ) |
49 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) ) |
50 |
28 29 49
|
mp2an |
⊢ ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) |
51 |
50 5
|
sselid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℂ ) ) |
52 |
1 2 3 14 48 51
|
ftc2re |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
53 |
46 52
|
breqtrd |
⊢ ( 𝜑 → 0 < ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
54 |
4 2
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
55 |
4 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
56 |
54 55
|
posdifd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐵 ) ↔ 0 < ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
57 |
53 56
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐵 ) ) |