Metamath Proof Explorer


Theorem felapton

Description: "Felapton", one of the syllogisms of Aristotelian logic. No ph is ps , all ph is ch , and some ph exist, therefore some ch is not ps . Instance of darapti . In Aristotelian notation, EAO-3: MeP and MaS therefore SoP. For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016)

Ref Expression
Hypotheses felapton.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
felapton.min 𝑥 ( 𝜑𝜒 )
felapton.e 𝑥 𝜑
Assertion felapton 𝑥 ( 𝜒 ∧ ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 felapton.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
2 felapton.min 𝑥 ( 𝜑𝜒 )
3 felapton.e 𝑥 𝜑
4 1 2 3 darapti 𝑥 ( 𝜒 ∧ ¬ 𝜓 )