Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
1
|
ffvelcdmda |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
3 |
2
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋 ∈ 𝐴 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |
4 |
|
df-nel |
⊢ ( ∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵 ) |
5 |
|
nelelne |
⊢ ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) |
6 |
4 5
|
sylbi |
⊢ ( ∅ ∉ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) |
7 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
8 |
|
fvfundmfvn0 |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) |
9 |
|
simprl |
⊢ ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → 𝑋 ∈ dom 𝐹 ) |
10 |
|
simpl |
⊢ ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → dom 𝐹 = 𝐴 ) |
11 |
9 10
|
eleqtrd |
⊢ ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → 𝑋 ∈ 𝐴 ) |
12 |
11
|
ex |
⊢ ( dom 𝐹 = 𝐴 → ( ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) → 𝑋 ∈ 𝐴 ) ) |
13 |
7 8 12
|
syl2im |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ 𝐴 ) ) |
14 |
6 13
|
sylan9r |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 → 𝑋 ∈ 𝐴 ) ) |
15 |
3 14
|
impbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋 ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |