Metamath Proof Explorer


Theorem feldmfvelcdm

Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025)

Ref Expression
Assertion feldmfvelcdm ( ( 𝐹 : 𝐴𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋𝐴 ↔ ( 𝐹𝑋 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 : 𝐴𝐵 ∧ ∅ ∉ 𝐵 ) → 𝐹 : 𝐴𝐵 )
2 1 ffvelcdmda ( ( ( 𝐹 : 𝐴𝐵 ∧ ∅ ∉ 𝐵 ) ∧ 𝑋𝐴 ) → ( 𝐹𝑋 ) ∈ 𝐵 )
3 2 ex ( ( 𝐹 : 𝐴𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋𝐴 → ( 𝐹𝑋 ) ∈ 𝐵 ) )
4 df-nel ( ∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵 )
5 nelelne ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹𝑋 ) ∈ 𝐵 → ( 𝐹𝑋 ) ≠ ∅ ) )
6 4 5 sylbi ( ∅ ∉ 𝐵 → ( ( 𝐹𝑋 ) ∈ 𝐵 → ( 𝐹𝑋 ) ≠ ∅ ) )
7 fdm ( 𝐹 : 𝐴𝐵 → dom 𝐹 = 𝐴 )
8 fvfundmfvn0 ( ( 𝐹𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) )
9 simprl ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → 𝑋 ∈ dom 𝐹 )
10 simpl ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → dom 𝐹 = 𝐴 )
11 9 10 eleqtrd ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → 𝑋𝐴 )
12 11 ex ( dom 𝐹 = 𝐴 → ( ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) → 𝑋𝐴 ) )
13 7 8 12 syl2im ( 𝐹 : 𝐴𝐵 → ( ( 𝐹𝑋 ) ≠ ∅ → 𝑋𝐴 ) )
14 6 13 sylan9r ( ( 𝐹 : 𝐴𝐵 ∧ ∅ ∉ 𝐵 ) → ( ( 𝐹𝑋 ) ∈ 𝐵𝑋𝐴 ) )
15 3 14 impbid ( ( 𝐹 : 𝐴𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋𝐴 ↔ ( 𝐹𝑋 ) ∈ 𝐵 ) )