Metamath Proof Explorer


Theorem fences3

Description: Implication of eqvrelqseqdisj2 and n0eldmqseq , see comment of fences . (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion fences3 ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj2 ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 )
2 n0eldmqseq ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ¬ ∅ ∈ 𝐴 )
3 2 adantl ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ¬ ∅ ∈ 𝐴 )
4 1 3 jca ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) )