Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | feq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
feq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
feq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | feq123d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
2 | feq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | feq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
4 | 1 2 | feq12d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐶 ) ) |
5 | 3 | feq3d | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐷 ) ) |
6 | 4 5 | bitrd | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐷 ) ) |