Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | feq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| feq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | feq12d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| 2 | feq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | 1 | feq1d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐴 ⟶ 𝐶 ) ) |
| 4 | 2 | feq2d | ⊢ ( 𝜑 → ( 𝐺 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐶 ) ) |
| 5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐶 ) ) |