Metamath Proof Explorer


Theorem feq12i

Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses feq12i.1 𝐹 = 𝐺
feq12i.2 𝐴 = 𝐵
Assertion feq12i ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 feq12i.1 𝐹 = 𝐺
2 feq12i.2 𝐴 = 𝐵
3 eqid 𝐶 = 𝐶
4 feq123 ( ( 𝐹 = 𝐺𝐴 = 𝐵𝐶 = 𝐶 ) → ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ) )
5 1 2 3 4 mp3an ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 )