Metamath Proof Explorer
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021)
|
|
Ref |
Expression |
|
Hypotheses |
feq12i.1 |
⊢ 𝐹 = 𝐺 |
|
|
feq12i.2 |
⊢ 𝐴 = 𝐵 |
|
Assertion |
feq12i |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
feq12i.1 |
⊢ 𝐹 = 𝐺 |
2 |
|
feq12i.2 |
⊢ 𝐴 = 𝐵 |
3 |
|
eqid |
⊢ 𝐶 = 𝐶 |
4 |
|
feq123 |
⊢ ( ( 𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ∧ 𝐶 = 𝐶 ) → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐶 ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐺 : 𝐵 ⟶ 𝐶 ) |