Metamath Proof Explorer


Theorem feq1d

Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008)

Ref Expression
Hypothesis feq1d.1 ( 𝜑𝐹 = 𝐺 )
Assertion feq1d ( 𝜑 → ( 𝐹 : 𝐴𝐵𝐺 : 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 feq1d.1 ( 𝜑𝐹 = 𝐺 )
2 feq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴𝐵𝐺 : 𝐴𝐵 ) )
3 1 2 syl ( 𝜑 → ( 𝐹 : 𝐴𝐵𝐺 : 𝐴𝐵 ) )