Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | feq2d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | feq2d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | feq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) ) |