Metamath Proof Explorer


Theorem feqresmpt

Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses feqmptd.1 ( 𝜑𝐹 : 𝐴𝐵 )
feqresmpt.2 ( 𝜑𝐶𝐴 )
Assertion feqresmpt ( 𝜑 → ( 𝐹𝐶 ) = ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 feqmptd.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 feqresmpt.2 ( 𝜑𝐶𝐴 )
3 1 2 fssresd ( 𝜑 → ( 𝐹𝐶 ) : 𝐶𝐵 )
4 3 feqmptd ( 𝜑 → ( 𝐹𝐶 ) = ( 𝑥𝐶 ↦ ( ( 𝐹𝐶 ) ‘ 𝑥 ) ) )
5 fvres ( 𝑥𝐶 → ( ( 𝐹𝐶 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
6 5 mpteq2ia ( 𝑥𝐶 ↦ ( ( 𝐹𝐶 ) ‘ 𝑥 ) ) = ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) )
7 4 6 eqtrdi ( 𝜑 → ( 𝐹𝐶 ) = ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) )