| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 2 |  | dvdsmodexp | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑃  ∈  ℕ  ∧  𝑃  ∥  𝐴 )  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) | 
						
							| 3 | 2 | 3exp | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  ∥  𝐴  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) ) ) | 
						
							| 4 | 1 1 3 | sylc | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∥  𝐴  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  𝐴  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) ) | 
						
							| 6 |  | coprm | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  𝑃  ∥  𝐴  ↔  ( 𝑃  gcd  𝐴 )  =  1 ) ) | 
						
							| 7 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 8 |  | gcdcom | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  gcd  𝐴 )  =  ( 𝐴  gcd  𝑃 ) ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  gcd  𝐴 )  =  ( 𝐴  gcd  𝑃 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝑃  gcd  𝐴 )  =  1  ↔  ( 𝐴  gcd  𝑃 )  =  1 ) ) | 
						
							| 11 | 6 10 | bitrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  𝑃  ∥  𝐴  ↔  ( 𝐴  gcd  𝑃 )  =  1 ) ) | 
						
							| 12 |  | simp2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  𝐴  ∈  ℤ ) | 
						
							| 13 | 1 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  𝑃  ∈  ℕ ) | 
						
							| 14 | 13 | phicld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ϕ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 15 | 14 | nnnn0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ϕ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 16 |  | zexpcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( ϕ ‘ 𝑃 )  ∈  ℕ0 )  →  ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ∈  ℤ ) | 
						
							| 17 | 12 15 16 | syl2anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ∈  ℤ ) | 
						
							| 18 | 17 | zred | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 19 |  | 1red | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  1  ∈  ℝ ) | 
						
							| 20 | 13 | nnrpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  𝑃  ∈  ℝ+ ) | 
						
							| 21 |  | eulerth | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 22 | 1 21 | syl3an1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 23 |  | modmul1 | ⊢ ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  ∧  ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℝ+ )  ∧  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ·  𝐴 )  mod  𝑃 )  =  ( ( 1  ·  𝐴 )  mod  𝑃 ) ) | 
						
							| 24 | 18 19 12 20 22 23 | syl221anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ·  𝐴 )  mod  𝑃 )  =  ( ( 1  ·  𝐴 )  mod  𝑃 ) ) | 
						
							| 25 |  | phiprm | ⊢ ( 𝑃  ∈  ℙ  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  =  ( 𝐴 ↑ ( 𝑃  −  1 ) ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ·  𝐴 )  =  ( ( 𝐴 ↑ ( 𝑃  −  1 ) )  ·  𝐴 ) ) | 
						
							| 29 | 12 | zcnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 30 |  | expm1t | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑃  ∈  ℕ )  →  ( 𝐴 ↑ 𝑃 )  =  ( ( 𝐴 ↑ ( 𝑃  −  1 ) )  ·  𝐴 ) ) | 
						
							| 31 | 29 13 30 | syl2anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( 𝐴 ↑ 𝑃 )  =  ( ( 𝐴 ↑ ( 𝑃  −  1 ) )  ·  𝐴 ) ) | 
						
							| 32 | 28 31 | eqtr4d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ·  𝐴 )  =  ( 𝐴 ↑ 𝑃 ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  ·  𝐴 )  mod  𝑃 )  =  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 ) ) | 
						
							| 34 | 29 | mullidd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 35 | 34 | oveq1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 1  ·  𝐴 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) | 
						
							| 36 | 24 33 35 | 3eqtr3d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) | 
						
							| 37 | 36 | 3expia | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  gcd  𝑃 )  =  1  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) ) | 
						
							| 38 | 11 37 | sylbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  𝑃  ∥  𝐴  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) ) | 
						
							| 39 | 5 38 | pm2.61d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴 ↑ 𝑃 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) |