Metamath Proof Explorer


Theorem fesapo

Description: "Fesapo", one of the syllogisms of Aristotelian logic. No ph is ps , all ps is ch , and ps exist, therefore some ch is not ph . In Aristotelian notation, EAO-4: PeM and MaS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses fesapo.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
fesapo.min 𝑥 ( 𝜓𝜒 )
fesapo.e 𝑥 𝜓
Assertion fesapo 𝑥 ( 𝜒 ∧ ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 fesapo.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
2 fesapo.min 𝑥 ( 𝜓𝜒 )
3 fesapo.e 𝑥 𝜓
4 con2 ( ( 𝜑 → ¬ 𝜓 ) → ( 𝜓 → ¬ 𝜑 ) )
5 4 alimi ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ∀ 𝑥 ( 𝜓 → ¬ 𝜑 ) )
6 1 5 ax-mp 𝑥 ( 𝜓 → ¬ 𝜑 )
7 6 2 3 felapton 𝑥 ( 𝜒 ∧ ¬ 𝜑 )