Metamath Proof Explorer


Theorem feu

Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003)

Ref Expression
Assertion feu ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ∃! 𝑦𝐵𝐶 , 𝑦 ⟩ ∈ 𝐹 )

Proof

Step Hyp Ref Expression
1 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
2 fneu2 ( ( 𝐹 Fn 𝐴𝐶𝐴 ) → ∃! 𝑦𝐶 , 𝑦 ⟩ ∈ 𝐹 )
3 1 2 sylan ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ∃! 𝑦𝐶 , 𝑦 ⟩ ∈ 𝐹 )
4 opelf ( ( 𝐹 : 𝐴𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐶𝐴𝑦𝐵 ) )
5 4 simprd ( ( 𝐹 : 𝐴𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ) → 𝑦𝐵 )
6 5 ex ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹𝑦𝐵 ) )
7 6 pm4.71rd ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ↔ ( 𝑦𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ) ) )
8 7 eubidv ( 𝐹 : 𝐴𝐵 → ( ∃! 𝑦𝐶 , 𝑦 ⟩ ∈ 𝐹 ↔ ∃! 𝑦 ( 𝑦𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ) ) )
9 8 adantr ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ( ∃! 𝑦𝐶 , 𝑦 ⟩ ∈ 𝐹 ↔ ∃! 𝑦 ( 𝑦𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ) ) )
10 3 9 mpbid ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ∃! 𝑦 ( 𝑦𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ) )
11 df-reu ( ∃! 𝑦𝐵𝐶 , 𝑦 ⟩ ∈ 𝐹 ↔ ∃! 𝑦 ( 𝑦𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ 𝐹 ) )
12 10 11 sylibr ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ∃! 𝑦𝐵𝐶 , 𝑦 ⟩ ∈ 𝐹 )