Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 2 | fnex | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐹 ∈ V ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → 𝐹 ∈ V ) |