Metamath Proof Explorer


Theorem ffdm

Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007)

Ref Expression
Assertion ffdm ( 𝐹 : 𝐴𝐵 → ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fdm ( 𝐹 : 𝐴𝐵 → dom 𝐹 = 𝐴 )
2 1 feq2d ( 𝐹 : 𝐴𝐵 → ( 𝐹 : dom 𝐹𝐵𝐹 : 𝐴𝐵 ) )
3 2 ibir ( 𝐹 : 𝐴𝐵𝐹 : dom 𝐹𝐵 )
4 eqimss ( dom 𝐹 = 𝐴 → dom 𝐹𝐴 )
5 1 4 syl ( 𝐹 : 𝐴𝐵 → dom 𝐹𝐴 )
6 3 5 jca ( 𝐹 : 𝐴𝐵 → ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) )