Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ffdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
2 | 1 | feq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
3 | 2 | ibir | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
4 | eqimss | ⊢ ( dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴 ) | |
5 | 1 4 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 ⊆ 𝐴 ) |
6 | 3 5 | jca | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |