Metamath Proof Explorer


Theorem ffdmd

Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis ffdmd.1 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion ffdmd ( 𝜑𝐹 : dom 𝐹𝐵 )

Proof

Step Hyp Ref Expression
1 ffdmd.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 ffdm ( 𝐹 : 𝐴𝐵 → ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) )
3 1 2 syl ( 𝜑 → ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) )
4 3 simpld ( 𝜑𝐹 : dom 𝐹𝐵 )