Metamath Proof Explorer
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypothesis |
ffdmd.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
Assertion |
ffdmd |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ffdmd.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
ffdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |
4 |
3
|
simpld |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |