Metamath Proof Explorer


Theorem ffi

Description: A function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ffi ( ( 𝐹 : 𝐴𝐵𝐴 ∈ Fin ) → 𝐹 ∈ Fin )

Proof

Step Hyp Ref Expression
1 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
2 fnfi ( ( 𝐹 Fn 𝐴𝐴 ∈ Fin ) → 𝐹 ∈ Fin )
3 1 2 sylan ( ( 𝐹 : 𝐴𝐵𝐴 ∈ Fin ) → 𝐹 ∈ Fin )