Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
2 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
3 |
2
|
ralrimiva |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
4 |
1 3
|
jca |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
5 |
|
simpl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝐹 Fn 𝐴 ) |
6 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
7 |
6
|
biimpd |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑦 ∈ ran 𝐹 → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
8 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 |
9 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
10 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
11 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
12 |
11
|
biimpcd |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) |
13 |
10 12
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) ) |
14 |
8 9 13
|
rexlimd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) |
15 |
7 14
|
sylan9 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵 ) ) |
16 |
15
|
ssrdv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
17 |
|
df-f |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵 ) ) |
18 |
5 16 17
|
sylanbrc |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
19 |
4 18
|
impbii |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |