| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffsrn.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑊 ) | 
						
							| 2 |  | ffsrn.0 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 3 |  | ffsrn.1 | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 4 |  | ffsrn.2 | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  ∈  Fin ) | 
						
							| 5 |  | dfdm4 | ⊢ dom  𝐹  =  ran  ◡ 𝐹 | 
						
							| 6 |  | dfrn4 | ⊢ ran  ◡ 𝐹  =  ( ◡ 𝐹  “  V ) | 
						
							| 7 | 5 6 | eqtri | ⊢ dom  𝐹  =  ( ◡ 𝐹  “  V ) | 
						
							| 8 |  | df-fn | ⊢ ( 𝐹  Fn  ( ◡ 𝐹  “  V )  ↔  ( Fun  𝐹  ∧  dom  𝐹  =  ( ◡ 𝐹  “  V ) ) ) | 
						
							| 9 |  | fnresdm | ⊢ ( 𝐹  Fn  ( ◡ 𝐹  “  V )  →  ( 𝐹  ↾  ( ◡ 𝐹  “  V ) )  =  𝐹 ) | 
						
							| 10 | 8 9 | sylbir | ⊢ ( ( Fun  𝐹  ∧  dom  𝐹  =  ( ◡ 𝐹  “  V ) )  →  ( 𝐹  ↾  ( ◡ 𝐹  “  V ) )  =  𝐹 ) | 
						
							| 11 | 3 7 10 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ◡ 𝐹  “  V ) )  =  𝐹 ) | 
						
							| 12 |  | imaundi | ⊢ ( ◡ 𝐹  “  ( ( V  ∖  { 𝑍 } )  ∪  { 𝑍 } ) )  =  ( ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∪  ( ◡ 𝐹  “  { 𝑍 } ) ) | 
						
							| 13 | 12 | reseq2i | ⊢ ( 𝐹  ↾  ( ◡ 𝐹  “  ( ( V  ∖  { 𝑍 } )  ∪  { 𝑍 } ) ) )  =  ( 𝐹  ↾  ( ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∪  ( ◡ 𝐹  “  { 𝑍 } ) ) ) | 
						
							| 14 |  | undif1 | ⊢ ( ( V  ∖  { 𝑍 } )  ∪  { 𝑍 } )  =  ( V  ∪  { 𝑍 } ) | 
						
							| 15 |  | ssv | ⊢ { 𝑍 }  ⊆  V | 
						
							| 16 |  | ssequn2 | ⊢ ( { 𝑍 }  ⊆  V  ↔  ( V  ∪  { 𝑍 } )  =  V ) | 
						
							| 17 | 15 16 | mpbi | ⊢ ( V  ∪  { 𝑍 } )  =  V | 
						
							| 18 | 14 17 | eqtri | ⊢ ( ( V  ∖  { 𝑍 } )  ∪  { 𝑍 } )  =  V | 
						
							| 19 | 18 | imaeq2i | ⊢ ( ◡ 𝐹  “  ( ( V  ∖  { 𝑍 } )  ∪  { 𝑍 } ) )  =  ( ◡ 𝐹  “  V ) | 
						
							| 20 | 19 | reseq2i | ⊢ ( 𝐹  ↾  ( ◡ 𝐹  “  ( ( V  ∖  { 𝑍 } )  ∪  { 𝑍 } ) ) )  =  ( 𝐹  ↾  ( ◡ 𝐹  “  V ) ) | 
						
							| 21 |  | resundi | ⊢ ( 𝐹  ↾  ( ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∪  ( ◡ 𝐹  “  { 𝑍 } ) ) )  =  ( ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) ) | 
						
							| 22 | 13 20 21 | 3eqtr3i | ⊢ ( 𝐹  ↾  ( ◡ 𝐹  “  V ) )  =  ( ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) ) | 
						
							| 23 | 11 22 | eqtr3di | ⊢ ( 𝜑  →  𝐹  =  ( ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) ) ) | 
						
							| 24 | 23 | rneqd | ⊢ ( 𝜑  →  ran  𝐹  =  ran  ( ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) ) ) | 
						
							| 25 |  | rnun | ⊢ ran  ( ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) )  =  ( ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) ) | 
						
							| 26 | 24 25 | eqtrdi | ⊢ ( 𝜑  →  ran  𝐹  =  ( ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) ) ) | 
						
							| 27 |  | suppimacnv | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 28 | 2 1 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 29 | 28 4 | eqeltrrd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∈  Fin ) | 
						
							| 30 |  | cnvexg | ⊢ ( 𝐹  ∈  𝑉  →  ◡ 𝐹  ∈  V ) | 
						
							| 31 |  | imaexg | ⊢ ( ◡ 𝐹  ∈  V  →  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∈  V ) | 
						
							| 32 | 2 30 31 | 3syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∈  V ) | 
						
							| 33 |  | cnvimass | ⊢ ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ⊆  dom  𝐹 | 
						
							| 34 |  | fores | ⊢ ( ( Fun  𝐹  ∧  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) : ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) –onto→ ( 𝐹  “  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) ) | 
						
							| 35 | 3 33 34 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) : ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) –onto→ ( 𝐹  “  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) ) | 
						
							| 36 |  | fofn | ⊢ ( ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) : ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) –onto→ ( 𝐹  “  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  →  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  Fn  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  Fn  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 38 |  | fnrndomg | ⊢ ( ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∈  V  →  ( ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  Fn  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ≼  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) ) | 
						
							| 39 | 32 37 38 | sylc | ⊢ ( 𝜑  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ≼  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 40 |  | domfi | ⊢ ( ( ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∈  Fin  ∧  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ≼  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∈  Fin ) | 
						
							| 41 | 29 39 40 | syl2anc | ⊢ ( 𝜑  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∈  Fin ) | 
						
							| 42 |  | snfi | ⊢ { 𝑍 }  ∈  Fin | 
						
							| 43 |  | df-ima | ⊢ ( 𝐹  “  ( ◡ 𝐹  “  { 𝑍 } ) )  =  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) | 
						
							| 44 |  | funimacnv | ⊢ ( Fun  𝐹  →  ( 𝐹  “  ( ◡ 𝐹  “  { 𝑍 } ) )  =  ( { 𝑍 }  ∩  ran  𝐹 ) ) | 
						
							| 45 | 3 44 | syl | ⊢ ( 𝜑  →  ( 𝐹  “  ( ◡ 𝐹  “  { 𝑍 } ) )  =  ( { 𝑍 }  ∩  ran  𝐹 ) ) | 
						
							| 46 | 43 45 | eqtr3id | ⊢ ( 𝜑  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) )  =  ( { 𝑍 }  ∩  ran  𝐹 ) ) | 
						
							| 47 |  | inss1 | ⊢ ( { 𝑍 }  ∩  ran  𝐹 )  ⊆  { 𝑍 } | 
						
							| 48 | 46 47 | eqsstrdi | ⊢ ( 𝜑  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) )  ⊆  { 𝑍 } ) | 
						
							| 49 |  | ssfi | ⊢ ( ( { 𝑍 }  ∈  Fin  ∧  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) )  ⊆  { 𝑍 } )  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) )  ∈  Fin ) | 
						
							| 50 | 42 48 49 | sylancr | ⊢ ( 𝜑  →  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) )  ∈  Fin ) | 
						
							| 51 |  | unfi | ⊢ ( ( ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∈  Fin  ∧  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) )  ∈  Fin )  →  ( ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) )  ∈  Fin ) | 
						
							| 52 | 41 50 51 | syl2anc | ⊢ ( 𝜑  →  ( ran  ( 𝐹  ↾  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) )  ∪  ran  ( 𝐹  ↾  ( ◡ 𝐹  “  { 𝑍 } ) ) )  ∈  Fin ) | 
						
							| 53 | 26 52 | eqeltrd | ⊢ ( 𝜑  →  ran  𝐹  ∈  Fin ) |