| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffun | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆  →  Fun  𝐹 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝐹 : 𝐼 ⟶ 𝑆 )  →  Fun  𝐹 ) | 
						
							| 3 |  | fex | ⊢ ( ( 𝐹 : 𝐼 ⟶ 𝑆  ∧  𝐼  ∈  𝑉 )  →  𝐹  ∈  V ) | 
						
							| 4 | 3 | expcom | ⊢ ( 𝐼  ∈  𝑉  →  ( 𝐹 : 𝐼 ⟶ 𝑆  →  𝐹  ∈  V ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹 : 𝐼 ⟶ 𝑆  →  𝐹  ∈  V ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝐹 : 𝐼 ⟶ 𝑆 )  →  𝐹  ∈  V ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝐹 : 𝐼 ⟶ 𝑆 )  →  𝑍  ∈  𝑊 ) | 
						
							| 8 |  | funisfsupp | ⊢ ( ( Fun  𝐹  ∧  𝐹  ∈  V  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 9 | 2 6 7 8 | syl3anc | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝐹 : 𝐼 ⟶ 𝑆 )  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 10 |  | fsuppeq | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹 : 𝐼 ⟶ 𝑆  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( 𝑆  ∖  { 𝑍 } ) ) ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝐹 : 𝐼 ⟶ 𝑆 )  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( 𝑆  ∖  { 𝑍 } ) ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝐹 : 𝐼 ⟶ 𝑆 )  →  ( ( 𝐹  supp  𝑍 )  ∈  Fin  ↔  ( ◡ 𝐹  “  ( 𝑆  ∖  { 𝑍 } ) )  ∈  Fin ) ) | 
						
							| 13 | 9 12 | bitrd | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝐹 : 𝐼 ⟶ 𝑆 )  →  ( 𝐹  finSupp  𝑍  ↔  ( ◡ 𝐹  “  ( 𝑆  ∖  { 𝑍 } ) )  ∈  Fin ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹 : 𝐼 ⟶ 𝑆  →  ( 𝐹  finSupp  𝑍  ↔  ( ◡ 𝐹  “  ( 𝑆  ∖  { 𝑍 } ) )  ∈  Fin ) ) ) |