Metamath Proof Explorer


Theorem ffthf1o

Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses isfth.b 𝐵 = ( Base ‘ 𝐶 )
isfth.h 𝐻 = ( Hom ‘ 𝐶 )
isfth.j 𝐽 = ( Hom ‘ 𝐷 )
ffthf1o.f ( 𝜑𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 )
ffthf1o.x ( 𝜑𝑋𝐵 )
ffthf1o.y ( 𝜑𝑌𝐵 )
Assertion ffthf1o ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 isfth.b 𝐵 = ( Base ‘ 𝐶 )
2 isfth.h 𝐻 = ( Hom ‘ 𝐶 )
3 isfth.j 𝐽 = ( Hom ‘ 𝐷 )
4 ffthf1o.f ( 𝜑𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 )
5 ffthf1o.x ( 𝜑𝑋𝐵 )
6 ffthf1o.y ( 𝜑𝑌𝐵 )
7 brin ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) )
8 4 7 sylib ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) )
9 8 simprd ( 𝜑𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 )
10 1 2 3 9 5 6 fthf1 ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
11 8 simpld ( 𝜑𝐹 ( 𝐶 Full 𝐷 ) 𝐺 )
12 1 3 2 11 5 6 fullfo ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
13 df-f1o ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ) )
14 10 12 13 sylanbrc ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )