Step |
Hyp |
Ref |
Expression |
1 |
|
isfth.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isfth.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isfth.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
4 |
|
ffthf1o.f |
⊢ ( 𝜑 → 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ) |
5 |
|
ffthf1o.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ffthf1o.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
brin |
⊢ ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) |
8 |
4 7
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) |
9 |
8
|
simprd |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
10 |
1 2 3 9 5 6
|
fthf1 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
11 |
8
|
simpld |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
12 |
1 3 2 11 5 6
|
fullfo |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
13 |
|
df-f1o |
⊢ ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
14 |
10 12 13
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |