Step |
Hyp |
Ref |
Expression |
1 |
|
fthmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
fthmon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
fthmon.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
4 |
|
fthmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
fthmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
fthmon.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
7 |
|
ffthiso.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
8 |
|
ffthiso.s |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
9 |
|
ffthiso.t |
⊢ 𝐽 = ( Iso ‘ 𝐷 ) |
10 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
11 |
10
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) |
17 |
1 8 9 13 14 15 16
|
funciso |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
18 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
19 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
20 |
12 19
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
21 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
24 |
23
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝐶 ∈ Cat ) |
25 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑋 ∈ 𝐵 ) |
26 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑌 ∈ 𝐵 ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
28 |
|
eqid |
⊢ ( Inv ‘ 𝐷 ) = ( Inv ‘ 𝐷 ) |
29 |
22
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
30 |
1 27 12
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
31 |
30 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
32 |
30 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
33 |
27 28 29 31 32 9
|
isoval |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) = dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
34 |
33
|
eleq2d |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
35 |
34
|
biimpa |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
36 |
27 28 29 31 32
|
invfun |
⊢ ( 𝜑 → Fun ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → Fun ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
38 |
|
funfvbrb |
⊢ ( Fun ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) ) |
40 |
35 39
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
42 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) |
43 |
41 42
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) |
44 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
45 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
46 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) |
47 |
1 2 44 25 26 45 46 18 28
|
fthinv |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( 𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓 ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) ) |
48 |
43 47
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓 ) |
49 |
1 18 24 25 26 8 48
|
inviso1 |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) |
50 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
51 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
52 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝑌 ∈ 𝐵 ) |
53 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝑋 ∈ 𝐵 ) |
54 |
27 50 9 29 32 31
|
isohom |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
56 |
27 28 29 31 32 9
|
invf |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
57 |
56
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
58 |
55 57
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
59 |
1 50 2 51 52 53 58
|
fulli |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ∃ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) |
60 |
49 59
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) |
61 |
17 60
|
impbida |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |