| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fthmon.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							fthmon.h | 
							⊢ 𝐻  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							fthmon.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Faith  𝐷 ) 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							fthmon.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							fthmon.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							fthmon.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( 𝑋 𝐻 𝑌 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ffthiso.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Full  𝐷 ) 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							ffthiso.s | 
							⊢ 𝐼  =  ( Iso ‘ 𝐶 )  | 
						
						
							| 9 | 
							
								
							 | 
							ffthiso.t | 
							⊢ 𝐽  =  ( Iso ‘ 𝐷 )  | 
						
						
							| 10 | 
							
								
							 | 
							fthfunc | 
							⊢ ( 𝐶  Faith  𝐷 )  ⊆  ( 𝐶  Func  𝐷 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ssbri | 
							⊢ ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 14 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  | 
						
						
							| 17 | 
							
								1 8 9 13 14 15 16
							 | 
							funciso | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 )  | 
						
						
							| 19 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							sylib | 
							⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							funcrcl | 
							⊢ ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 )  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 24 | 
							
								23
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝐶  ∈  Cat )  | 
						
						
							| 25 | 
							
								4
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 26 | 
							
								5
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( Inv ‘ 𝐷 )  =  ( Inv ‘ 𝐷 )  | 
						
						
							| 29 | 
							
								22
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 30 | 
							
								1 27 12
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 31 | 
							
								30 4
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 32 | 
							
								30 5
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑌 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 33 | 
							
								27 28 29 31 32 9
							 | 
							isoval | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) )  =  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							biimpa | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 36 | 
							
								27 28 29 31 32
							 | 
							invfun | 
							⊢ ( 𝜑  →  Fun  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  Fun  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							funfvbrb | 
							⊢ ( Fun  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) )  →  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) )  | 
						
						
							| 40 | 
							
								35 39
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							breqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  | 
						
						
							| 44 | 
							
								3
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝐹 ( 𝐶  Faith  𝐷 ) 𝐺 )  | 
						
						
							| 45 | 
							
								6
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑅  ∈  ( 𝑋 𝐻 𝑌 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  | 
						
						
							| 47 | 
							
								1 2 44 25 26 45 46 18 28
							 | 
							fthinv | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( 𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) )  | 
						
						
							| 48 | 
							
								43 47
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓 )  | 
						
						
							| 49 | 
							
								1 18 24 25 26 8 48
							 | 
							inviso1 | 
							⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐷 )  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 51 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝐹 ( 𝐶  Full  𝐷 ) 𝐺 )  | 
						
						
							| 52 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 53 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 54 | 
							
								27 50 9 29 32 31
							 | 
							isohom | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) )  ⊆  ( ( 𝐹 ‘ 𝑌 ) ( Hom  ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) )  ⊆  ( ( 𝐹 ‘ 𝑌 ) ( Hom  ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 56 | 
							
								27 28 29 31 32 9
							 | 
							invf | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  ∈  ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  ∈  ( ( 𝐹 ‘ 𝑌 ) ( Hom  ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 59 | 
							
								1 50 2 51 52 53 58
							 | 
							fulli | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ∃ 𝑓  ∈  ( 𝑌 𝐻 𝑋 ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  | 
						
						
							| 60 | 
							
								49 59
							 | 
							r19.29a | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  | 
						
						
							| 61 | 
							
								17 60
							 | 
							impbida | 
							⊢ ( 𝜑  →  ( 𝑅  ∈  ( 𝑋 𝐼 𝑌 )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) )  |