Metamath Proof Explorer


Theorem ffthoppc

Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fulloppc.o 𝑂 = ( oppCat ‘ 𝐶 )
fulloppc.p 𝑃 = ( oppCat ‘ 𝐷 )
ffthoppc.f ( 𝜑𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 )
Assertion ffthoppc ( 𝜑𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 )

Proof

Step Hyp Ref Expression
1 fulloppc.o 𝑂 = ( oppCat ‘ 𝐶 )
2 fulloppc.p 𝑃 = ( oppCat ‘ 𝐷 )
3 ffthoppc.f ( 𝜑𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 )
4 brin ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) )
5 3 4 sylib ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) )
6 5 simpld ( 𝜑𝐹 ( 𝐶 Full 𝐷 ) 𝐺 )
7 1 2 6 fulloppc ( 𝜑𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 )
8 5 simprd ( 𝜑𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 )
9 1 2 8 fthoppc ( 𝜑𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 )
10 brin ( 𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 ↔ ( 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 ) )
11 7 9 10 sylanbrc ( 𝜑𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 )