| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulloppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fulloppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
ffthoppc.f |
⊢ ( 𝜑 → 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ) |
| 4 |
|
brin |
⊢ ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) |
| 6 |
5
|
simpld |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
| 7 |
1 2 6
|
fulloppc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ) |
| 8 |
5
|
simprd |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 9 |
1 2 8
|
fthoppc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 ) |
| 10 |
|
brin |
⊢ ( 𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 ↔ ( 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ∧ 𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 ) ) |
| 11 |
7 9 10
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 ) |