Metamath Proof Explorer


Theorem ffund

Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis ffund.1 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion ffund ( 𝜑 → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 ffund.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 ffun ( 𝐹 : 𝐴𝐵 → Fun 𝐹 )
3 1 2 syl ( 𝜑 → Fun 𝐹 )