Metamath Proof Explorer


Theorem ffvelrnda

Description: A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypothesis ffvelrnd.1 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion ffvelrnda ( ( 𝜑𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ffvelrnd.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 ffvelrn ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐵 )
3 1 2 sylan ( ( 𝜑𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐵 )