Step |
Hyp |
Ref |
Expression |
1 |
|
fdm |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 → dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) |
2 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) |
3 |
|
inss2 |
⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
4 |
2 3
|
eqsstri |
⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ dom 𝐹 |
5 |
1 4
|
eqsstrrdi |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 → 𝐴 ⊆ dom 𝐹 ) |
6 |
5
|
sselda |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝐹 ) |
7 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
|
ffvelrn |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ 𝐵 ) |
10 |
8 9
|
eqeltrrd |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
6 10
|
jca |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
13 |
|
simpl |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ dom 𝐹 ) |
14 |
13
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝐹 ) |
15 |
|
dfss3 |
⊢ ( 𝐴 ⊆ dom 𝐹 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝐹 ) |
16 |
14 15
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝐴 ⊆ dom 𝐹 ) |
17 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
18 |
|
fnssres |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
19 |
17 18
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
20 |
16 19
|
sylan2 |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
21 |
|
simpr |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
22 |
7
|
eleq1d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
23 |
21 22
|
syl5ibr |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
24 |
23
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ 𝐵 ) |
25 |
24
|
adantl |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ 𝐵 ) |
26 |
|
fnfvrnss |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ 𝐵 ) → ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝐵 ) |
27 |
20 25 26
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝐵 ) |
28 |
|
df-f |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ↔ ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ∧ ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝐵 ) ) |
29 |
20 27 28
|
sylanbrc |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
30 |
29
|
ex |
⊢ ( Fun 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) ) |
31 |
12 30
|
impbid2 |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |