Metamath Proof Explorer


Theorem ffz0iswrd

Description: A sequence with zero-based indices is a word. (Contributed by AV, 31-Jan-2018) (Proof shortened by AV, 13-Oct-2018) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion ffz0iswrd ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆𝑊 ∈ Word 𝑆 )

Proof

Step Hyp Ref Expression
1 fzval3 ( 𝐿 ∈ ℤ → ( 0 ... 𝐿 ) = ( 0 ..^ ( 𝐿 + 1 ) ) )
2 1 feq2d ( 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆𝑊 : ( 0 ..^ ( 𝐿 + 1 ) ) ⟶ 𝑆 ) )
3 iswrdi ( 𝑊 : ( 0 ..^ ( 𝐿 + 1 ) ) ⟶ 𝑆𝑊 ∈ Word 𝑆 )
4 2 3 syl6bi ( 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆𝑊 ∈ Word 𝑆 ) )
5 fzn0 ( ( 0 ... 𝐿 ) ≠ ∅ ↔ 𝐿 ∈ ( ℤ ‘ 0 ) )
6 elnn0uz ( 𝐿 ∈ ℕ0𝐿 ∈ ( ℤ ‘ 0 ) )
7 5 6 sylbb2 ( ( 0 ... 𝐿 ) ≠ ∅ → 𝐿 ∈ ℕ0 )
8 7 nn0zd ( ( 0 ... 𝐿 ) ≠ ∅ → 𝐿 ∈ ℤ )
9 8 necon1bi ( ¬ 𝐿 ∈ ℤ → ( 0 ... 𝐿 ) = ∅ )
10 9 feq2d ( ¬ 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆𝑊 : ∅ ⟶ 𝑆 ) )
11 iswrddm0 ( 𝑊 : ∅ ⟶ 𝑆𝑊 ∈ Word 𝑆 )
12 10 11 syl6bi ( ¬ 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆𝑊 ∈ Word 𝑆 ) )
13 4 12 pm2.61i ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆𝑊 ∈ Word 𝑆 )