Metamath Proof Explorer


Theorem ffzo0hash

Description: The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018)

Ref Expression
Assertion ffzo0hash ( ( 𝑁 ∈ ℕ0𝐹 Fn ( 0 ..^ 𝑁 ) ) → ( ♯ ‘ 𝐹 ) = 𝑁 )

Proof

Step Hyp Ref Expression
1 hashfn ( 𝐹 Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) )
2 hashfzo0 ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 )
3 1 2 sylan9eqr ( ( 𝑁 ∈ ℕ0𝐹 Fn ( 0 ..^ 𝑁 ) ) → ( ♯ ‘ 𝐹 ) = 𝑁 )