Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
2 |
|
fgcl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) ) |
3 |
|
filfbas |
⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ) |
4 |
1 2 3
|
3syl |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ) |
5 |
|
fbsspw |
⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑌 ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑌 ) |
7 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝑌 ⊆ 𝑋 ) |
8 |
7
|
sspwd |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝒫 𝑌 ⊆ 𝒫 𝑋 ) |
9 |
6 8
|
sstrd |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑋 ) |
10 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝑋 ∈ V ) |
11 |
|
fbasweak |
⊢ ( ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ∧ ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
12 |
4 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
13 |
|
elfg |
⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 ) ) ) |
15 |
1
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
16 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 ) ) ) |
18 |
|
fbsspw |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ⊆ 𝒫 𝑌 ) |
19 |
1 18
|
syl |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ 𝒫 𝑌 ) |
20 |
19 8
|
sstrd |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ 𝒫 𝑋 ) |
21 |
|
fbasweak |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
22 |
1 20 10 21
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
23 |
|
fgcl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
26 |
|
ssfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
27 |
22 26
|
syl |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
29 |
28
|
sselda |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ) |
30 |
29
|
adantrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ) → 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ) |
31 |
30
|
adantrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ) |
32 |
|
simplrl |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑋 ) |
33 |
|
simprlr |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑧 ⊆ 𝑦 ) |
34 |
|
simprr |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) |
35 |
33 34
|
sstrd |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑧 ⊆ 𝑥 ) |
36 |
|
filss |
⊢ ( ( ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ∧ 𝑥 ⊆ 𝑋 ∧ 𝑧 ⊆ 𝑥 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) |
37 |
25 31 32 35 36
|
syl13anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) |
38 |
37
|
expr |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
39 |
38
|
rexlimdvaa |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
40 |
39
|
anassrs |
⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑦 ⊆ 𝑌 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
41 |
40
|
expimpd |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
42 |
17 41
|
sylbid |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐹 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
43 |
42
|
rexlimdv |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
44 |
43
|
expimpd |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
45 |
14 44
|
sylbid |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
46 |
45
|
ssrdv |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ⊆ ( 𝑋 filGen 𝐹 ) ) |
47 |
|
ssfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ⊆ ( 𝑌 filGen 𝐹 ) ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ ( 𝑌 filGen 𝐹 ) ) |
49 |
|
fgss |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ ( 𝑌 filGen 𝐹 ) ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) |
50 |
22 12 48 49
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) |
51 |
46 50
|
eqssd |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |
52 |
51
|
ex |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑋 ∈ V → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) ) |
53 |
|
df-fg |
⊢ filGen = ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } ) |
54 |
53
|
reldmmpo |
⊢ Rel dom filGen |
55 |
54
|
ovprc1 |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ∅ ) |
56 |
54
|
ovprc1 |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 filGen 𝐹 ) = ∅ ) |
57 |
55 56
|
eqtr4d |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |
58 |
52 57
|
pm2.61d1 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |