Metamath Proof Explorer


Theorem fgfil

Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 filfbas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
2 elfg ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) ) )
3 1 2 syl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) ) )
4 filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥𝐹𝑡𝑋𝑥𝑡 ) ) → 𝑡𝐹 )
5 4 3exp2 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐹 → ( 𝑡𝑋 → ( 𝑥𝑡𝑡𝐹 ) ) ) )
6 5 com34 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐹 → ( 𝑥𝑡 → ( 𝑡𝑋𝑡𝐹 ) ) ) )
7 6 rexlimdv ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑥𝐹 𝑥𝑡 → ( 𝑡𝑋𝑡𝐹 ) ) )
8 7 impcomd ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) → 𝑡𝐹 ) )
9 3 8 sylbid ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡𝐹 ) )
10 9 ssrdv ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ⊆ 𝐹 )
11 ssfg ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) )
12 1 11 syl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) )
13 10 12 eqssd ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 )