Step |
Hyp |
Ref |
Expression |
1 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
2 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
4 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡 ) ) → 𝑡 ∈ 𝐹 ) |
5 |
4
|
3exp2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑡 ⊆ 𝑋 → ( 𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹 ) ) ) ) |
6 |
5
|
com34 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) ) |
7 |
6
|
rexlimdv |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) |
8 |
7
|
impcomd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) → 𝑡 ∈ 𝐹 ) ) |
9 |
3 8
|
sylbid |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡 ∈ 𝐹 ) ) |
10 |
9
|
ssrdv |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ⊆ 𝐹 ) |
11 |
|
ssfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
12 |
1 11
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
13 |
10 12
|
eqssd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) |