Metamath Proof Explorer


Theorem fglmod

Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Assertion fglmod ( 𝑀 ∈ LFinGen → 𝑀 ∈ LMod )

Proof

Step Hyp Ref Expression
1 df-lfig LFinGen = { 𝑎 ∈ LMod ∣ ( Base ‘ 𝑎 ) ∈ ( ( LSpan ‘ 𝑎 ) “ ( 𝒫 ( Base ‘ 𝑎 ) ∩ Fin ) ) }
2 1 ssrab3 LFinGen ⊆ LMod
3 2 sseli ( 𝑀 ∈ LFinGen → 𝑀 ∈ LMod )