Metamath Proof Explorer


Theorem fgss

Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgss ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) )

Proof

Step Hyp Ref Expression
1 ssrexv ( 𝐹𝐺 → ( ∃ 𝑥𝐹 𝑥𝑡 → ∃ 𝑥𝐺 𝑥𝑡 ) )
2 1 anim2d ( 𝐹𝐺 → ( ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) → ( 𝑡𝑋 ∧ ∃ 𝑥𝐺 𝑥𝑡 ) ) )
3 2 3ad2ant3 ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) → ( 𝑡𝑋 ∧ ∃ 𝑥𝐺 𝑥𝑡 ) ) )
4 elfg ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) ) )
5 4 3ad2ant1 ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) ) )
6 elfg ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐺 𝑥𝑡 ) ) )
7 6 3ad2ant2 ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐺 𝑥𝑡 ) ) )
8 3 5 7 3imtr4d ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ) )
9 8 ssrdv ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) )