Step |
Hyp |
Ref |
Expression |
1 |
|
ssrexv |
⊢ ( 𝐹 ⊆ 𝐺 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) |
2 |
1
|
anim2d |
⊢ ( 𝐹 ⊆ 𝐺 → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) |
3 |
2
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) |
4 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
6 |
|
elfg |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) |
8 |
3 5 7
|
3imtr4d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ) ) |
9 |
8
|
ssrdv |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ) |