Step |
Hyp |
Ref |
Expression |
1 |
|
ssfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
3 |
2
|
sseld |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝐹 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
4 |
|
ssel2 |
⊢ ( ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐺 ) ) |
5 |
|
elfg |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) ) |
6 |
|
simpr |
⊢ ( ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) |
7 |
5 6
|
syl6bi |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐺 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐺 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
9 |
4 8
|
syl5 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
10 |
9
|
expd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) ) |
11 |
3 10
|
syl5d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) → ( 𝑥 ∈ 𝐹 → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) ) |
12 |
11
|
ralrimdv |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) → ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
13 |
|
sseq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑢 ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ↔ ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 ) ) |
15 |
14
|
rspcv |
⊢ ( 𝑢 ∈ 𝐹 → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 ) ) |
17 |
|
sstr |
⊢ ( ( 𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡 ) → 𝑦 ⊆ 𝑡 ) |
18 |
|
sseq1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 ⊆ 𝑡 ↔ 𝑦 ⊆ 𝑡 ) ) |
19 |
18
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡 ) → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡 ) ) → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) |
21 |
20
|
a1d |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡 ) ) → ( 𝑡 ⊆ 𝑋 → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) |
22 |
17 21
|
sylanr2 |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ ( 𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡 ) ) ) → ( 𝑡 ⊆ 𝑋 → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) |
23 |
22
|
ancld |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ ( 𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡 ) ) ) → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
24 |
23
|
exp45 |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( 𝑦 ∈ 𝐺 → ( 𝑦 ⊆ 𝑢 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) ) |
25 |
24
|
rexlimdv |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) |
26 |
16 25
|
syld |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) |
27 |
26
|
impancom |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑢 ∈ 𝐹 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) |
28 |
27
|
rexlimdv |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) |
29 |
28
|
impcomd |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
30 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) ) ) |
33 |
|
elfg |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
36 |
29 32 35
|
3imtr4d |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ) ) |
37 |
36
|
ssrdv |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ) |
38 |
37
|
ex |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ) ) |
39 |
12 38
|
impbid |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ↔ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |