Step |
Hyp |
Ref |
Expression |
1 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
2 |
|
fbncp |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) |
4 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ 𝑋 ) |
5 |
|
trfil3 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ¬ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) |
6 |
4 5
|
syldan |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ¬ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) |
7 |
3 6
|
mpbird |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
8 |
|
filfbas |
⊢ ( ( 𝐹 ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
10 |
|
restsspw |
⊢ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
11 |
4
|
sspwd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝒫 𝐴 ⊆ 𝒫 𝑋 ) |
12 |
10 11
|
sstrid |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝑋 ) |
13 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
14 |
13
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝑋 ∈ 𝐹 ) |
15 |
|
fbasweak |
⊢ ( ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ) |
16 |
9 12 14 15
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ) |
17 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
18 |
|
trfilss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ⊆ 𝐹 ) |
19 |
|
fgss |
⊢ ( ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) ⊆ ( 𝑋 filGen 𝐹 ) ) |
20 |
16 17 18 19
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) ⊆ ( 𝑋 filGen 𝐹 ) ) |
21 |
|
fgfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) |
22 |
21
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) |
23 |
20 22
|
sseqtrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) ⊆ 𝐹 ) |
24 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝑋 ) |
25 |
24
|
ex |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → 𝑥 ⊆ 𝑋 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 → 𝑥 ⊆ 𝑋 ) ) |
27 |
|
elrestr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
28 |
27
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
29 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 |
30 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝑥 ∩ 𝐴 ) → ( 𝑦 ⊆ 𝑥 ↔ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 ) ) |
31 |
30
|
rspcev |
⊢ ( ( ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ∧ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 ) → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) 𝑦 ⊆ 𝑥 ) |
32 |
28 29 31
|
sylancl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) 𝑦 ⊆ 𝑥 ) |
33 |
32
|
ex |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) 𝑦 ⊆ 𝑥 ) ) |
34 |
26 33
|
jcad |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) 𝑦 ⊆ 𝑥 ) ) ) |
35 |
|
elfg |
⊢ ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) 𝑦 ⊆ 𝑥 ) ) ) |
36 |
16 35
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) 𝑦 ⊆ 𝑥 ) ) ) |
37 |
34 36
|
sylibrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 → 𝑥 ∈ ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) ) ) |
38 |
37
|
ssrdv |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐹 ⊆ ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) ) |
39 |
23 38
|
eqssd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝐴 ) ) = 𝐹 ) |