Metamath Proof Explorer


Theorem fgtr

Description: If A is a member of the filter, then truncating F to A and regenerating the behavior outside A using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion fgtr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑋 filGen ( 𝐹t 𝐴 ) ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 filfbas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
2 fbncp ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ¬ ( 𝑋𝐴 ) ∈ 𝐹 )
3 1 2 sylan ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ¬ ( 𝑋𝐴 ) ∈ 𝐹 )
4 filelss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴𝑋 )
5 trfil3 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( ( 𝐹t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ¬ ( 𝑋𝐴 ) ∈ 𝐹 ) )
6 4 5 syldan ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( ( 𝐹t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ¬ ( 𝑋𝐴 ) ∈ 𝐹 ) )
7 3 6 mpbird ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) )
8 filfbas ( ( 𝐹t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) → ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) )
9 7 8 syl ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) )
10 restsspw ( 𝐹t 𝐴 ) ⊆ 𝒫 𝐴
11 4 sspwd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝒫 𝐴 ⊆ 𝒫 𝑋 )
12 10 11 sstrid ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) ⊆ 𝒫 𝑋 )
13 filtop ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋𝐹 )
14 13 adantr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝑋𝐹 )
15 fbasweak ( ( ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ ( 𝐹t 𝐴 ) ⊆ 𝒫 𝑋𝑋𝐹 ) → ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) )
16 9 12 14 15 syl3anc ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) )
17 1 adantr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
18 trfilss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) ⊆ 𝐹 )
19 fgss ( ( ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝐹t 𝐴 ) ⊆ 𝐹 ) → ( 𝑋 filGen ( 𝐹t 𝐴 ) ) ⊆ ( 𝑋 filGen 𝐹 ) )
20 16 17 18 19 syl3anc ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑋 filGen ( 𝐹t 𝐴 ) ) ⊆ ( 𝑋 filGen 𝐹 ) )
21 fgfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 )
22 21 adantr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 )
23 20 22 sseqtrd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑋 filGen ( 𝐹t 𝐴 ) ) ⊆ 𝐹 )
24 filelss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝐹 ) → 𝑥𝑋 )
25 24 ex ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐹𝑥𝑋 ) )
26 25 adantr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑥𝐹𝑥𝑋 ) )
27 elrestr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝑥𝐹 ) → ( 𝑥𝐴 ) ∈ ( 𝐹t 𝐴 ) )
28 27 3expa ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) ∧ 𝑥𝐹 ) → ( 𝑥𝐴 ) ∈ ( 𝐹t 𝐴 ) )
29 inss1 ( 𝑥𝐴 ) ⊆ 𝑥
30 sseq1 ( 𝑦 = ( 𝑥𝐴 ) → ( 𝑦𝑥 ↔ ( 𝑥𝐴 ) ⊆ 𝑥 ) )
31 30 rspcev ( ( ( 𝑥𝐴 ) ∈ ( 𝐹t 𝐴 ) ∧ ( 𝑥𝐴 ) ⊆ 𝑥 ) → ∃ 𝑦 ∈ ( 𝐹t 𝐴 ) 𝑦𝑥 )
32 28 29 31 sylancl ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) ∧ 𝑥𝐹 ) → ∃ 𝑦 ∈ ( 𝐹t 𝐴 ) 𝑦𝑥 )
33 32 ex ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑥𝐹 → ∃ 𝑦 ∈ ( 𝐹t 𝐴 ) 𝑦𝑥 ) )
34 26 33 jcad ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑥𝐹 → ( 𝑥𝑋 ∧ ∃ 𝑦 ∈ ( 𝐹t 𝐴 ) 𝑦𝑥 ) ) )
35 elfg ( ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝐹t 𝐴 ) ) ↔ ( 𝑥𝑋 ∧ ∃ 𝑦 ∈ ( 𝐹t 𝐴 ) 𝑦𝑥 ) ) )
36 16 35 syl ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝐹t 𝐴 ) ) ↔ ( 𝑥𝑋 ∧ ∃ 𝑦 ∈ ( 𝐹t 𝐴 ) 𝑦𝑥 ) ) )
37 34 36 sylibrd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑥𝐹𝑥 ∈ ( 𝑋 filGen ( 𝐹t 𝐴 ) ) ) )
38 37 ssrdv ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐹 ⊆ ( 𝑋 filGen ( 𝐹t 𝐴 ) ) )
39 23 38 eqssd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑋 filGen ( 𝐹t 𝐴 ) ) = 𝐹 )