Step |
Hyp |
Ref |
Expression |
1 |
|
fh1.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
fh1.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
fh1.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
fh1.4 |
⊢ 𝐴 𝐶ℋ 𝐵 |
5 |
|
fh1.5 |
⊢ 𝐴 𝐶ℋ 𝐶 |
6 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
7 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
8 |
3
|
choccli |
⊢ ( ⊥ ‘ 𝐶 ) ∈ Cℋ |
9 |
1 2 4
|
cmcm3ii |
⊢ ( ⊥ ‘ 𝐴 ) 𝐶ℋ 𝐵 |
10 |
6 2 9
|
cmcm2ii |
⊢ ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) |
11 |
1 3 5
|
cmcm3ii |
⊢ ( ⊥ ‘ 𝐴 ) 𝐶ℋ 𝐶 |
12 |
6 3 11
|
cmcm2ii |
⊢ ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐶 ) |
13 |
6 7 8 10 12
|
fh2i |
⊢ ( ( ⊥ ‘ 𝐵 ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐶 ) ) ) = ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) |
14 |
1 3
|
chdmm1i |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐶 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐶 ) ) |
15 |
14
|
ineq2i |
⊢ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ ( 𝐴 ∩ 𝐶 ) ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐶 ) ) ) |
16 |
2 1
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐴 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) |
17 |
2 3
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) |
18 |
16 17
|
oveq12i |
⊢ ( ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) = ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) |
19 |
13 15 18
|
3eqtr4ri |
⊢ ( ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ ( 𝐴 ∩ 𝐶 ) ) ) |
20 |
2 1
|
chjcli |
⊢ ( 𝐵 ∨ℋ 𝐴 ) ∈ Cℋ |
21 |
2 3
|
chjcli |
⊢ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ |
22 |
20 21
|
chdmm1i |
⊢ ( ⊥ ‘ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = ( ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
23 |
1 3
|
chincli |
⊢ ( 𝐴 ∩ 𝐶 ) ∈ Cℋ |
24 |
2 23
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐵 ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ ( 𝐴 ∩ 𝐶 ) ) ) |
25 |
19 22 24
|
3eqtr4i |
⊢ ( ⊥ ‘ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = ( ⊥ ‘ ( 𝐵 ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) |
26 |
2 23
|
chjcli |
⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ∈ Cℋ |
27 |
20 21
|
chincli |
⊢ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ |
28 |
26 27
|
chcon3i |
⊢ ( ( 𝐵 ∨ℋ ( 𝐴 ∩ 𝐶 ) ) = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ↔ ( ⊥ ‘ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = ( ⊥ ‘ ( 𝐵 ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) ) |
29 |
25 28
|
mpbir |
⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ 𝐶 ) ) = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) |