Step |
Hyp |
Ref |
Expression |
1 |
|
fi1uzind.f |
⊢ 𝐹 ∈ V |
2 |
|
fi1uzind.l |
⊢ 𝐿 ∈ ℕ0 |
3 |
|
fi1uzind.1 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) |
4 |
|
fi1uzind.2 |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) |
5 |
|
fi1uzind.3 |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) |
6 |
|
fi1uzind.4 |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) |
7 |
|
fi1uzind.base |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) |
8 |
|
fi1uzind.step |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
9 |
|
dfclel |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ↔ ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ) |
10 |
|
nn0z |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ ) |
11 |
2 10
|
mp1i |
⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝐿 ∈ ℤ ) |
12 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝑛 ∈ ℤ ) |
14 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ↔ 𝐿 ≤ 𝑛 ) ) |
15 |
14
|
eqcoms |
⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ↔ 𝐿 ≤ 𝑛 ) ) |
16 |
15
|
biimpcd |
⊢ ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → ( 𝑛 = ( ♯ ‘ 𝑉 ) → 𝐿 ≤ 𝑛 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 = ( ♯ ‘ 𝑉 ) → 𝐿 ≤ 𝑛 ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝐿 ≤ 𝑛 ) |
19 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐿 → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ 𝐿 = ( ♯ ‘ 𝑣 ) ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑥 = 𝐿 → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) ) ) |
21 |
20
|
imbi1d |
⊢ ( 𝑥 = 𝐿 → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
22 |
21
|
2albidv |
⊢ ( 𝑥 = 𝐿 → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
23 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ 𝑦 = ( ♯ ‘ 𝑣 ) ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) ) ) |
25 |
24
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
26 |
25
|
2albidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
27 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) |
28 |
27
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ) |
29 |
28
|
imbi1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
30 |
29
|
2albidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
31 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ 𝑛 = ( ♯ ‘ 𝑣 ) ) ) |
32 |
31
|
anbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) ) ) |
33 |
32
|
imbi1d |
⊢ ( 𝑥 = 𝑛 → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
34 |
33
|
2albidv |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
35 |
|
eqcom |
⊢ ( 𝐿 = ( ♯ ‘ 𝑣 ) ↔ ( ♯ ‘ 𝑣 ) = 𝐿 ) |
36 |
35 7
|
sylan2b |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) |
37 |
36
|
gen2 |
⊢ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) |
38 |
37
|
a1i |
⊢ ( 𝐿 ∈ ℤ → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
39 |
|
simpl |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → 𝑣 = 𝑤 ) |
40 |
|
simpr |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → 𝑒 = 𝑓 ) |
41 |
40
|
sbceq1d |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝑓 / 𝑏 ] 𝜌 ) ) |
42 |
39 41
|
sbceqbid |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( ♯ ‘ 𝑣 ) = ( ♯ ‘ 𝑤 ) ) |
44 |
43
|
eqeq2d |
⊢ ( 𝑣 = 𝑤 → ( 𝑦 = ( ♯ ‘ 𝑣 ) ↔ 𝑦 = ( ♯ ‘ 𝑤 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝑦 = ( ♯ ‘ 𝑣 ) ↔ 𝑦 = ( ♯ ‘ 𝑤 ) ) ) |
46 |
42 45
|
anbi12d |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) ) ) |
47 |
46 4
|
imbi12d |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) ) |
48 |
47
|
cbval2vw |
⊢ ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) |
49 |
|
nn0ge0 |
⊢ ( 𝐿 ∈ ℕ0 → 0 ≤ 𝐿 ) |
50 |
|
0red |
⊢ ( 𝑦 ∈ ℤ → 0 ∈ ℝ ) |
51 |
|
nn0re |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) |
52 |
2 51
|
mp1i |
⊢ ( 𝑦 ∈ ℤ → 𝐿 ∈ ℝ ) |
53 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
54 |
|
letr |
⊢ ( ( 0 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦 ) → 0 ≤ 𝑦 ) ) |
55 |
50 52 53 54
|
syl3anc |
⊢ ( 𝑦 ∈ ℤ → ( ( 0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦 ) → 0 ≤ 𝑦 ) ) |
56 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
57 |
|
pm3.22 |
⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) |
58 |
|
0z |
⊢ 0 ∈ ℤ |
59 |
|
eluz1 |
⊢ ( 0 ∈ ℤ → ( 𝑦 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) ) |
60 |
58 59
|
mp1i |
⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) ) |
61 |
57 60
|
mpbird |
⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ( ℤ≥ ‘ 0 ) ) |
62 |
|
eluznn0 |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑦 ∈ ( ℤ≥ ‘ 0 ) ) → 𝑦 ∈ ℕ0 ) |
63 |
56 61 62
|
sylancr |
⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℕ0 ) |
64 |
63
|
ex |
⊢ ( 0 ≤ 𝑦 → ( 𝑦 ∈ ℤ → 𝑦 ∈ ℕ0 ) ) |
65 |
55 64
|
syl6com |
⊢ ( ( 0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦 ) → ( 𝑦 ∈ ℤ → ( 𝑦 ∈ ℤ → 𝑦 ∈ ℕ0 ) ) ) |
66 |
65
|
ex |
⊢ ( 0 ≤ 𝐿 → ( 𝐿 ≤ 𝑦 → ( 𝑦 ∈ ℤ → ( 𝑦 ∈ ℤ → 𝑦 ∈ ℕ0 ) ) ) ) |
67 |
66
|
com14 |
⊢ ( 𝑦 ∈ ℤ → ( 𝐿 ≤ 𝑦 → ( 𝑦 ∈ ℤ → ( 0 ≤ 𝐿 → 𝑦 ∈ ℕ0 ) ) ) ) |
68 |
67
|
pm2.43a |
⊢ ( 𝑦 ∈ ℤ → ( 𝐿 ≤ 𝑦 → ( 0 ≤ 𝐿 → 𝑦 ∈ ℕ0 ) ) ) |
69 |
68
|
imp |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → ( 0 ≤ 𝐿 → 𝑦 ∈ ℕ0 ) ) |
70 |
69
|
com12 |
⊢ ( 0 ≤ 𝐿 → ( ( 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → 𝑦 ∈ ℕ0 ) ) |
71 |
2 49 70
|
mp2b |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → 𝑦 ∈ ℕ0 ) |
72 |
71
|
3adant1 |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → 𝑦 ∈ ℕ0 ) |
73 |
|
eqcom |
⊢ ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ↔ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) |
74 |
|
nn0p1gt0 |
⊢ ( 𝑦 ∈ ℕ0 → 0 < ( 𝑦 + 1 ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( 𝑦 + 1 ) ) |
76 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) |
77 |
75 76
|
breqtrrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
78 |
73 77
|
sylan2b |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
79 |
78
|
adantrl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
80 |
|
hashgt0elex |
⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ∃ 𝑛 𝑛 ∈ 𝑣 ) |
81 |
|
vex |
⊢ 𝑣 ∈ V |
82 |
81
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑣 ∈ V ) |
83 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑛 ∈ 𝑣 ) |
84 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑦 ∈ ℕ0 ) |
85 |
|
hashdifsnp1 |
⊢ ( ( 𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
86 |
73 85
|
syl5bi |
⊢ ( ( 𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
87 |
82 83 84 86
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
88 |
87
|
imp |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) |
89 |
|
peano2nn0 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) |
90 |
89
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
91 |
90
|
ad2antlr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
92 |
|
simpr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) |
93 |
|
simplrr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) |
94 |
|
simprlr |
⊢ ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → 𝑛 ∈ 𝑣 ) |
95 |
94
|
adantr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → 𝑛 ∈ 𝑣 ) |
96 |
92 93 95
|
3jca |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) |
97 |
91 96
|
jca |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
98 |
81
|
difexi |
⊢ ( 𝑣 ∖ { 𝑛 } ) ∈ V |
99 |
|
simpl |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ) |
100 |
|
simpr |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
101 |
100
|
sbceq1d |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( [ 𝑓 / 𝑏 ] 𝜌 ↔ [ 𝐹 / 𝑏 ] 𝜌 ) ) |
102 |
99 101
|
sbceqbid |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ↔ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ) |
103 |
|
eqcom |
⊢ ( 𝑦 = ( ♯ ‘ 𝑤 ) ↔ ( ♯ ‘ 𝑤 ) = 𝑦 ) |
104 |
|
fveqeq2 |
⊢ ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) → ( ( ♯ ‘ 𝑤 ) = 𝑦 ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
105 |
103 104
|
syl5bb |
⊢ ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) → ( 𝑦 = ( ♯ ‘ 𝑤 ) ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝑦 = ( ♯ ‘ 𝑤 ) ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
107 |
102 106
|
anbi12d |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) ↔ ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) ) |
108 |
107 6
|
imbi12d |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ↔ ( ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
109 |
108
|
spc2gv |
⊢ ( ( ( 𝑣 ∖ { 𝑛 } ) ∈ V ∧ 𝐹 ∈ V ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ( ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
110 |
98 1 109
|
mp2an |
⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ( ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) |
111 |
110
|
expdimp |
⊢ ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
112 |
111
|
ad2antrr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
113 |
73
|
3anbi2i |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) |
114 |
113
|
anbi2i |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) ↔ ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
115 |
114 8
|
sylanb |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
116 |
97 112 115
|
syl6an |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) |
117 |
116
|
exp41 |
⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) ) ) ) |
118 |
117
|
com15 |
⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
119 |
118
|
com23 |
⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
120 |
88 119
|
mpcom |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) |
121 |
120
|
ex |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
122 |
121
|
com23 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
123 |
122
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑛 ∈ 𝑣 → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
124 |
123
|
com15 |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( 𝑛 ∈ 𝑣 → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
125 |
124
|
imp |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 ∈ 𝑣 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
126 |
5 125
|
mpd |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) |
127 |
126
|
ex |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( 𝑛 ∈ 𝑣 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
128 |
127
|
com4l |
⊢ ( 𝑛 ∈ 𝑣 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
129 |
128
|
exlimiv |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑣 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
130 |
80 129
|
syl |
⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
131 |
130
|
ex |
⊢ ( 𝑣 ∈ V → ( 0 < ( ♯ ‘ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
132 |
131
|
com25 |
⊢ ( 𝑣 ∈ V → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
133 |
132
|
elv |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
134 |
133
|
imp |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) |
135 |
134
|
impcom |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) |
136 |
79 135
|
mpd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) |
137 |
72 136
|
sylan |
⊢ ( ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) |
138 |
137
|
impancom |
⊢ ( ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) ∧ ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
139 |
138
|
alrimivv |
⊢ ( ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) ∧ ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
140 |
139
|
ex |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
141 |
48 140
|
syl5bi |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
142 |
22 26 30 34 38 141
|
uzind |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐿 ≤ 𝑛 ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
143 |
11 13 18 142
|
syl3anc |
⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
144 |
|
sbcex |
⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → 𝑉 ∈ V ) |
145 |
|
sbccom |
⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ↔ [ 𝐸 / 𝑏 ] [ 𝑉 / 𝑎 ] 𝜌 ) |
146 |
|
sbcex |
⊢ ( [ 𝐸 / 𝑏 ] [ 𝑉 / 𝑎 ] 𝜌 → 𝐸 ∈ V ) |
147 |
145 146
|
sylbi |
⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → 𝐸 ∈ V ) |
148 |
144 147
|
jca |
⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
149 |
|
simpl |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝑣 = 𝑉 ) |
150 |
|
simpr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝑒 = 𝐸 ) |
151 |
150
|
sbceq1d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝐸 / 𝑏 ] 𝜌 ) ) |
152 |
149 151
|
sbceqbid |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ) ) |
153 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( ♯ ‘ 𝑣 ) = ( ♯ ‘ 𝑉 ) ) |
154 |
153
|
eqeq2d |
⊢ ( 𝑣 = 𝑉 → ( 𝑛 = ( ♯ ‘ 𝑣 ) ↔ 𝑛 = ( ♯ ‘ 𝑉 ) ) ) |
155 |
154
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑛 = ( ♯ ‘ 𝑣 ) ↔ 𝑛 = ( ♯ ‘ 𝑉 ) ) ) |
156 |
152 155
|
anbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) ) ) |
157 |
156 3
|
imbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) ) |
158 |
157
|
spc2gv |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) ) |
159 |
158
|
com23 |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) ) |
160 |
159
|
expd |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) ) ) |
161 |
148 160
|
mpcom |
⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) ) |
162 |
161
|
imp |
⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) |
163 |
143 162
|
syl5com |
⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) |
164 |
163
|
exp31 |
⊢ ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) ) ) |
165 |
164
|
com14 |
⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( 𝑛 ∈ ℕ0 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) |
166 |
165
|
expcom |
⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑛 ∈ ℕ0 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) ) |
167 |
166
|
com24 |
⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) ) |
168 |
167
|
pm2.43i |
⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) |
169 |
168
|
imp |
⊢ ( ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
170 |
169
|
exlimiv |
⊢ ( ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
171 |
9 170
|
sylbi |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
172 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
173 |
171 172
|
syl11 |
⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑉 ∈ Fin → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
174 |
173
|
3imp |
⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |