Step |
Hyp |
Ref |
Expression |
1 |
|
fi1uzind.f |
β’ πΉ β V |
2 |
|
fi1uzind.l |
β’ πΏ β β0 |
3 |
|
fi1uzind.1 |
β’ ( ( π£ = π β§ π = πΈ ) β ( π β π ) ) |
4 |
|
fi1uzind.2 |
β’ ( ( π£ = π€ β§ π = π ) β ( π β π ) ) |
5 |
|
fi1uzind.3 |
β’ ( ( [ π£ / π ] [ π / π ] π β§ π β π£ ) β [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) |
6 |
|
fi1uzind.4 |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β ( π β π ) ) |
7 |
|
fi1uzind.base |
β’ ( ( [ π£ / π ] [ π / π ] π β§ ( β― β π£ ) = πΏ ) β π ) |
8 |
|
fi1uzind.step |
β’ ( ( ( ( π¦ + 1 ) β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( β― β π£ ) = ( π¦ + 1 ) β§ π β π£ ) ) β§ π ) β π ) |
9 |
|
dfclel |
β’ ( ( β― β π ) β β0 β β π ( π = ( β― β π ) β§ π β β0 ) ) |
10 |
|
nn0z |
β’ ( πΏ β β0 β πΏ β β€ ) |
11 |
2 10
|
mp1i |
β’ ( ( ( πΏ β€ ( β― β π ) β§ π β β0 ) β§ π = ( β― β π ) ) β πΏ β β€ ) |
12 |
|
nn0z |
β’ ( π β β0 β π β β€ ) |
13 |
12
|
ad2antlr |
β’ ( ( ( πΏ β€ ( β― β π ) β§ π β β0 ) β§ π = ( β― β π ) ) β π β β€ ) |
14 |
|
breq2 |
β’ ( ( β― β π ) = π β ( πΏ β€ ( β― β π ) β πΏ β€ π ) ) |
15 |
14
|
eqcoms |
β’ ( π = ( β― β π ) β ( πΏ β€ ( β― β π ) β πΏ β€ π ) ) |
16 |
15
|
biimpcd |
β’ ( πΏ β€ ( β― β π ) β ( π = ( β― β π ) β πΏ β€ π ) ) |
17 |
16
|
adantr |
β’ ( ( πΏ β€ ( β― β π ) β§ π β β0 ) β ( π = ( β― β π ) β πΏ β€ π ) ) |
18 |
17
|
imp |
β’ ( ( ( πΏ β€ ( β― β π ) β§ π β β0 ) β§ π = ( β― β π ) ) β πΏ β€ π ) |
19 |
|
eqeq1 |
β’ ( π₯ = πΏ β ( π₯ = ( β― β π£ ) β πΏ = ( β― β π£ ) ) ) |
20 |
19
|
anbi2d |
β’ ( π₯ = πΏ β ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β ( [ π£ / π ] [ π / π ] π β§ πΏ = ( β― β π£ ) ) ) ) |
21 |
20
|
imbi1d |
β’ ( π₯ = πΏ β ( ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β ( ( [ π£ / π ] [ π / π ] π β§ πΏ = ( β― β π£ ) ) β π ) ) ) |
22 |
21
|
2albidv |
β’ ( π₯ = πΏ β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ πΏ = ( β― β π£ ) ) β π ) ) ) |
23 |
|
eqeq1 |
β’ ( π₯ = π¦ β ( π₯ = ( β― β π£ ) β π¦ = ( β― β π£ ) ) ) |
24 |
23
|
anbi2d |
β’ ( π₯ = π¦ β ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β ( [ π£ / π ] [ π / π ] π β§ π¦ = ( β― β π£ ) ) ) ) |
25 |
24
|
imbi1d |
β’ ( π₯ = π¦ β ( ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β ( ( [ π£ / π ] [ π / π ] π β§ π¦ = ( β― β π£ ) ) β π ) ) ) |
26 |
25
|
2albidv |
β’ ( π₯ = π¦ β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π¦ = ( β― β π£ ) ) β π ) ) ) |
27 |
|
eqeq1 |
β’ ( π₯ = ( π¦ + 1 ) β ( π₯ = ( β― β π£ ) β ( π¦ + 1 ) = ( β― β π£ ) ) ) |
28 |
27
|
anbi2d |
β’ ( π₯ = ( π¦ + 1 ) β ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) ) |
29 |
28
|
imbi1d |
β’ ( π₯ = ( π¦ + 1 ) β ( ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) β π ) ) ) |
30 |
29
|
2albidv |
β’ ( π₯ = ( π¦ + 1 ) β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) β π ) ) ) |
31 |
|
eqeq1 |
β’ ( π₯ = π β ( π₯ = ( β― β π£ ) β π = ( β― β π£ ) ) ) |
32 |
31
|
anbi2d |
β’ ( π₯ = π β ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) ) ) |
33 |
32
|
imbi1d |
β’ ( π₯ = π β ( ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) ) ) |
34 |
33
|
2albidv |
β’ ( π₯ = π β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π₯ = ( β― β π£ ) ) β π ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) ) ) |
35 |
|
eqcom |
β’ ( πΏ = ( β― β π£ ) β ( β― β π£ ) = πΏ ) |
36 |
35 7
|
sylan2b |
β’ ( ( [ π£ / π ] [ π / π ] π β§ πΏ = ( β― β π£ ) ) β π ) |
37 |
36
|
gen2 |
β’ β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ πΏ = ( β― β π£ ) ) β π ) |
38 |
37
|
a1i |
β’ ( πΏ β β€ β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ πΏ = ( β― β π£ ) ) β π ) ) |
39 |
|
simpl |
β’ ( ( π£ = π€ β§ π = π ) β π£ = π€ ) |
40 |
|
simpr |
β’ ( ( π£ = π€ β§ π = π ) β π = π ) |
41 |
40
|
sbceq1d |
β’ ( ( π£ = π€ β§ π = π ) β ( [ π / π ] π β [ π / π ] π ) ) |
42 |
39 41
|
sbceqbid |
β’ ( ( π£ = π€ β§ π = π ) β ( [ π£ / π ] [ π / π ] π β [ π€ / π ] [ π / π ] π ) ) |
43 |
|
fveq2 |
β’ ( π£ = π€ β ( β― β π£ ) = ( β― β π€ ) ) |
44 |
43
|
eqeq2d |
β’ ( π£ = π€ β ( π¦ = ( β― β π£ ) β π¦ = ( β― β π€ ) ) ) |
45 |
44
|
adantr |
β’ ( ( π£ = π€ β§ π = π ) β ( π¦ = ( β― β π£ ) β π¦ = ( β― β π€ ) ) ) |
46 |
42 45
|
anbi12d |
β’ ( ( π£ = π€ β§ π = π ) β ( ( [ π£ / π ] [ π / π ] π β§ π¦ = ( β― β π£ ) ) β ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) ) ) |
47 |
46 4
|
imbi12d |
β’ ( ( π£ = π€ β§ π = π ) β ( ( ( [ π£ / π ] [ π / π ] π β§ π¦ = ( β― β π£ ) ) β π ) β ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) ) ) |
48 |
47
|
cbval2vw |
β’ ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π¦ = ( β― β π£ ) ) β π ) β β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) ) |
49 |
|
nn0ge0 |
β’ ( πΏ β β0 β 0 β€ πΏ ) |
50 |
|
0red |
β’ ( π¦ β β€ β 0 β β ) |
51 |
|
nn0re |
β’ ( πΏ β β0 β πΏ β β ) |
52 |
2 51
|
mp1i |
β’ ( π¦ β β€ β πΏ β β ) |
53 |
|
zre |
β’ ( π¦ β β€ β π¦ β β ) |
54 |
|
letr |
β’ ( ( 0 β β β§ πΏ β β β§ π¦ β β ) β ( ( 0 β€ πΏ β§ πΏ β€ π¦ ) β 0 β€ π¦ ) ) |
55 |
50 52 53 54
|
syl3anc |
β’ ( π¦ β β€ β ( ( 0 β€ πΏ β§ πΏ β€ π¦ ) β 0 β€ π¦ ) ) |
56 |
|
0nn0 |
β’ 0 β β0 |
57 |
|
pm3.22 |
β’ ( ( 0 β€ π¦ β§ π¦ β β€ ) β ( π¦ β β€ β§ 0 β€ π¦ ) ) |
58 |
|
0z |
β’ 0 β β€ |
59 |
|
eluz1 |
β’ ( 0 β β€ β ( π¦ β ( β€β₯ β 0 ) β ( π¦ β β€ β§ 0 β€ π¦ ) ) ) |
60 |
58 59
|
mp1i |
β’ ( ( 0 β€ π¦ β§ π¦ β β€ ) β ( π¦ β ( β€β₯ β 0 ) β ( π¦ β β€ β§ 0 β€ π¦ ) ) ) |
61 |
57 60
|
mpbird |
β’ ( ( 0 β€ π¦ β§ π¦ β β€ ) β π¦ β ( β€β₯ β 0 ) ) |
62 |
|
eluznn0 |
β’ ( ( 0 β β0 β§ π¦ β ( β€β₯ β 0 ) ) β π¦ β β0 ) |
63 |
56 61 62
|
sylancr |
β’ ( ( 0 β€ π¦ β§ π¦ β β€ ) β π¦ β β0 ) |
64 |
63
|
ex |
β’ ( 0 β€ π¦ β ( π¦ β β€ β π¦ β β0 ) ) |
65 |
55 64
|
syl6com |
β’ ( ( 0 β€ πΏ β§ πΏ β€ π¦ ) β ( π¦ β β€ β ( π¦ β β€ β π¦ β β0 ) ) ) |
66 |
65
|
ex |
β’ ( 0 β€ πΏ β ( πΏ β€ π¦ β ( π¦ β β€ β ( π¦ β β€ β π¦ β β0 ) ) ) ) |
67 |
66
|
com14 |
β’ ( π¦ β β€ β ( πΏ β€ π¦ β ( π¦ β β€ β ( 0 β€ πΏ β π¦ β β0 ) ) ) ) |
68 |
67
|
pm2.43a |
β’ ( π¦ β β€ β ( πΏ β€ π¦ β ( 0 β€ πΏ β π¦ β β0 ) ) ) |
69 |
68
|
imp |
β’ ( ( π¦ β β€ β§ πΏ β€ π¦ ) β ( 0 β€ πΏ β π¦ β β0 ) ) |
70 |
69
|
com12 |
β’ ( 0 β€ πΏ β ( ( π¦ β β€ β§ πΏ β€ π¦ ) β π¦ β β0 ) ) |
71 |
2 49 70
|
mp2b |
β’ ( ( π¦ β β€ β§ πΏ β€ π¦ ) β π¦ β β0 ) |
72 |
71
|
3adant1 |
β’ ( ( πΏ β β€ β§ π¦ β β€ β§ πΏ β€ π¦ ) β π¦ β β0 ) |
73 |
|
eqcom |
β’ ( ( π¦ + 1 ) = ( β― β π£ ) β ( β― β π£ ) = ( π¦ + 1 ) ) |
74 |
|
nn0p1gt0 |
β’ ( π¦ β β0 β 0 < ( π¦ + 1 ) ) |
75 |
74
|
adantr |
β’ ( ( π¦ β β0 β§ ( β― β π£ ) = ( π¦ + 1 ) ) β 0 < ( π¦ + 1 ) ) |
76 |
|
simpr |
β’ ( ( π¦ β β0 β§ ( β― β π£ ) = ( π¦ + 1 ) ) β ( β― β π£ ) = ( π¦ + 1 ) ) |
77 |
75 76
|
breqtrrd |
β’ ( ( π¦ β β0 β§ ( β― β π£ ) = ( π¦ + 1 ) ) β 0 < ( β― β π£ ) ) |
78 |
73 77
|
sylan2b |
β’ ( ( π¦ β β0 β§ ( π¦ + 1 ) = ( β― β π£ ) ) β 0 < ( β― β π£ ) ) |
79 |
78
|
adantrl |
β’ ( ( π¦ β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β 0 < ( β― β π£ ) ) |
80 |
|
hashgt0elex |
β’ ( ( π£ β V β§ 0 < ( β― β π£ ) ) β β π π β π£ ) |
81 |
|
vex |
β’ π£ β V |
82 |
81
|
a1i |
β’ ( ( π¦ β β0 β§ π β π£ ) β π£ β V ) |
83 |
|
simpr |
β’ ( ( π¦ β β0 β§ π β π£ ) β π β π£ ) |
84 |
|
simpl |
β’ ( ( π¦ β β0 β§ π β π£ ) β π¦ β β0 ) |
85 |
|
hashdifsnp1 |
β’ ( ( π£ β V β§ π β π£ β§ π¦ β β0 ) β ( ( β― β π£ ) = ( π¦ + 1 ) β ( β― β ( π£ β { π } ) ) = π¦ ) ) |
86 |
73 85
|
biimtrid |
β’ ( ( π£ β V β§ π β π£ β§ π¦ β β0 ) β ( ( π¦ + 1 ) = ( β― β π£ ) β ( β― β ( π£ β { π } ) ) = π¦ ) ) |
87 |
82 83 84 86
|
syl3anc |
β’ ( ( π¦ β β0 β§ π β π£ ) β ( ( π¦ + 1 ) = ( β― β π£ ) β ( β― β ( π£ β { π } ) ) = π¦ ) ) |
88 |
87
|
imp |
β’ ( ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) β ( β― β ( π£ β { π } ) ) = π¦ ) |
89 |
|
peano2nn0 |
β’ ( π¦ β β0 β ( π¦ + 1 ) β β0 ) |
90 |
89
|
ad2antrr |
β’ ( ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) β ( π¦ + 1 ) β β0 ) |
91 |
90
|
ad2antlr |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β ( π¦ + 1 ) β β0 ) |
92 |
|
simpr |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β [ π£ / π ] [ π / π ] π ) |
93 |
|
simplrr |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β ( π¦ + 1 ) = ( β― β π£ ) ) |
94 |
|
simprlr |
β’ ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β π β π£ ) |
95 |
94
|
adantr |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β π β π£ ) |
96 |
92 93 95
|
3jca |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) β§ π β π£ ) ) |
97 |
91 96
|
jca |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β ( ( π¦ + 1 ) β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) β§ π β π£ ) ) ) |
98 |
81
|
difexi |
β’ ( π£ β { π } ) β V |
99 |
|
simpl |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β π€ = ( π£ β { π } ) ) |
100 |
|
simpr |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β π = πΉ ) |
101 |
100
|
sbceq1d |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β ( [ π / π ] π β [ πΉ / π ] π ) ) |
102 |
99 101
|
sbceqbid |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β ( [ π€ / π ] [ π / π ] π β [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) ) |
103 |
|
eqcom |
β’ ( π¦ = ( β― β π€ ) β ( β― β π€ ) = π¦ ) |
104 |
|
fveqeq2 |
β’ ( π€ = ( π£ β { π } ) β ( ( β― β π€ ) = π¦ β ( β― β ( π£ β { π } ) ) = π¦ ) ) |
105 |
103 104
|
bitrid |
β’ ( π€ = ( π£ β { π } ) β ( π¦ = ( β― β π€ ) β ( β― β ( π£ β { π } ) ) = π¦ ) ) |
106 |
105
|
adantr |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β ( π¦ = ( β― β π€ ) β ( β― β ( π£ β { π } ) ) = π¦ ) ) |
107 |
102 106
|
anbi12d |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β§ ( β― β ( π£ β { π } ) ) = π¦ ) ) ) |
108 |
107 6
|
imbi12d |
β’ ( ( π€ = ( π£ β { π } ) β§ π = πΉ ) β ( ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β ( ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β§ ( β― β ( π£ β { π } ) ) = π¦ ) β π ) ) ) |
109 |
108
|
spc2gv |
β’ ( ( ( π£ β { π } ) β V β§ πΉ β V ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β ( ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β§ ( β― β ( π£ β { π } ) ) = π¦ ) β π ) ) ) |
110 |
98 1 109
|
mp2an |
β’ ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β ( ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β§ ( β― β ( π£ β { π } ) ) = π¦ ) β π ) ) |
111 |
110
|
expdimp |
β’ ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β ( ( β― β ( π£ β { π } ) ) = π¦ β π ) ) |
112 |
111
|
ad2antrr |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β ( ( β― β ( π£ β { π } ) ) = π¦ β π ) ) |
113 |
73
|
3anbi2i |
β’ ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) β§ π β π£ ) β ( [ π£ / π ] [ π / π ] π β§ ( β― β π£ ) = ( π¦ + 1 ) β§ π β π£ ) ) |
114 |
113
|
anbi2i |
β’ ( ( ( π¦ + 1 ) β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) β§ π β π£ ) ) β ( ( π¦ + 1 ) β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( β― β π£ ) = ( π¦ + 1 ) β§ π β π£ ) ) ) |
115 |
114 8
|
sylanb |
β’ ( ( ( ( π¦ + 1 ) β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) β§ π β π£ ) ) β§ π ) β π ) |
116 |
97 112 115
|
syl6an |
β’ ( ( ( ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β§ [ ( π£ β { π } ) / π ] [ πΉ / π ] π ) β§ ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β§ [ π£ / π ] [ π / π ] π ) β ( ( β― β ( π£ β { π } ) ) = π¦ β π ) ) |
117 |
116
|
exp41 |
β’ ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) β ( [ π£ / π ] [ π / π ] π β ( ( β― β ( π£ β { π } ) ) = π¦ β π ) ) ) ) ) |
118 |
117
|
com15 |
β’ ( ( β― β ( π£ β { π } ) ) = π¦ β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
119 |
118
|
com23 |
β’ ( ( β― β ( π£ β { π } ) ) = π¦ β ( ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
120 |
88 119
|
mpcom |
β’ ( ( ( π¦ β β0 β§ π β π£ ) β§ ( π¦ + 1 ) = ( β― β π£ ) ) β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) |
121 |
120
|
ex |
β’ ( ( π¦ β β0 β§ π β π£ ) β ( ( π¦ + 1 ) = ( β― β π£ ) β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
122 |
121
|
com23 |
β’ ( ( π¦ β β0 β§ π β π£ ) β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( ( π¦ + 1 ) = ( β― β π£ ) β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
123 |
122
|
ex |
β’ ( π¦ β β0 β ( π β π£ β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( ( π¦ + 1 ) = ( β― β π£ ) β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) ) |
124 |
123
|
com15 |
β’ ( [ π£ / π ] [ π / π ] π β ( π β π£ β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) ) |
125 |
124
|
imp |
β’ ( ( [ π£ / π ] [ π / π ] π β§ π β π£ ) β ( [ ( π£ β { π } ) / π ] [ πΉ / π ] π β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
126 |
5 125
|
mpd |
β’ ( ( [ π£ / π ] [ π / π ] π β§ π β π£ ) β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) |
127 |
126
|
ex |
β’ ( [ π£ / π ] [ π / π ] π β ( π β π£ β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
128 |
127
|
com4l |
β’ ( π β π£ β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
129 |
128
|
exlimiv |
β’ ( β π π β π£ β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
130 |
80 129
|
syl |
β’ ( ( π£ β V β§ 0 < ( β― β π£ ) ) β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
131 |
130
|
ex |
β’ ( π£ β V β ( 0 < ( β― β π£ ) β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( [ π£ / π ] [ π / π ] π β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) ) |
132 |
131
|
com25 |
β’ ( π£ β V β ( [ π£ / π ] [ π / π ] π β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( 0 < ( β― β π£ ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) ) |
133 |
132
|
elv |
β’ ( [ π£ / π ] [ π / π ] π β ( ( π¦ + 1 ) = ( β― β π£ ) β ( π¦ β β0 β ( 0 < ( β― β π£ ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) ) |
134 |
133
|
imp |
β’ ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) β ( π¦ β β0 β ( 0 < ( β― β π£ ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) ) |
135 |
134
|
impcom |
β’ ( ( π¦ β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β ( 0 < ( β― β π£ ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) ) |
136 |
79 135
|
mpd |
β’ ( ( π¦ β β0 β§ ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) |
137 |
72 136
|
sylan |
β’ ( ( ( πΏ β β€ β§ π¦ β β€ β§ πΏ β€ π¦ ) β§ ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β π ) ) |
138 |
137
|
impancom |
β’ ( ( ( πΏ β β€ β§ π¦ β β€ β§ πΏ β€ π¦ ) β§ β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) ) β ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) β π ) ) |
139 |
138
|
alrimivv |
β’ ( ( ( πΏ β β€ β§ π¦ β β€ β§ πΏ β€ π¦ ) β§ β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) β π ) ) |
140 |
139
|
ex |
β’ ( ( πΏ β β€ β§ π¦ β β€ β§ πΏ β€ π¦ ) β ( β π€ β π ( ( [ π€ / π ] [ π / π ] π β§ π¦ = ( β― β π€ ) ) β π ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) β π ) ) ) |
141 |
48 140
|
biimtrid |
β’ ( ( πΏ β β€ β§ π¦ β β€ β§ πΏ β€ π¦ ) β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π¦ = ( β― β π£ ) ) β π ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ ( π¦ + 1 ) = ( β― β π£ ) ) β π ) ) ) |
142 |
22 26 30 34 38 141
|
uzind |
β’ ( ( πΏ β β€ β§ π β β€ β§ πΏ β€ π ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) ) |
143 |
11 13 18 142
|
syl3anc |
β’ ( ( ( πΏ β€ ( β― β π ) β§ π β β0 ) β§ π = ( β― β π ) ) β β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) ) |
144 |
|
sbcex |
β’ ( [ π / π ] [ πΈ / π ] π β π β V ) |
145 |
|
sbccom |
β’ ( [ π / π ] [ πΈ / π ] π β [ πΈ / π ] [ π / π ] π ) |
146 |
|
sbcex |
β’ ( [ πΈ / π ] [ π / π ] π β πΈ β V ) |
147 |
145 146
|
sylbi |
β’ ( [ π / π ] [ πΈ / π ] π β πΈ β V ) |
148 |
144 147
|
jca |
β’ ( [ π / π ] [ πΈ / π ] π β ( π β V β§ πΈ β V ) ) |
149 |
|
simpl |
β’ ( ( π£ = π β§ π = πΈ ) β π£ = π ) |
150 |
|
simpr |
β’ ( ( π£ = π β§ π = πΈ ) β π = πΈ ) |
151 |
150
|
sbceq1d |
β’ ( ( π£ = π β§ π = πΈ ) β ( [ π / π ] π β [ πΈ / π ] π ) ) |
152 |
149 151
|
sbceqbid |
β’ ( ( π£ = π β§ π = πΈ ) β ( [ π£ / π ] [ π / π ] π β [ π / π ] [ πΈ / π ] π ) ) |
153 |
|
fveq2 |
β’ ( π£ = π β ( β― β π£ ) = ( β― β π ) ) |
154 |
153
|
eqeq2d |
β’ ( π£ = π β ( π = ( β― β π£ ) β π = ( β― β π ) ) ) |
155 |
154
|
adantr |
β’ ( ( π£ = π β§ π = πΈ ) β ( π = ( β― β π£ ) β π = ( β― β π ) ) ) |
156 |
152 155
|
anbi12d |
β’ ( ( π£ = π β§ π = πΈ ) β ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) ) ) |
157 |
156 3
|
imbi12d |
β’ ( ( π£ = π β§ π = πΈ ) β ( ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) β ( ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) β π ) ) ) |
158 |
157
|
spc2gv |
β’ ( ( π β V β§ πΈ β V ) β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) β ( ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) β π ) ) ) |
159 |
158
|
com23 |
β’ ( ( π β V β§ πΈ β V ) β ( ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) β π ) ) ) |
160 |
159
|
expd |
β’ ( ( π β V β§ πΈ β V ) β ( [ π / π ] [ πΈ / π ] π β ( π = ( β― β π ) β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) β π ) ) ) ) |
161 |
148 160
|
mpcom |
β’ ( [ π / π ] [ πΈ / π ] π β ( π = ( β― β π ) β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) β π ) ) ) |
162 |
161
|
imp |
β’ ( ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) β ( β π£ β π ( ( [ π£ / π ] [ π / π ] π β§ π = ( β― β π£ ) ) β π ) β π ) ) |
163 |
143 162
|
syl5com |
β’ ( ( ( πΏ β€ ( β― β π ) β§ π β β0 ) β§ π = ( β― β π ) ) β ( ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) β π ) ) |
164 |
163
|
exp31 |
β’ ( πΏ β€ ( β― β π ) β ( π β β0 β ( π = ( β― β π ) β ( ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) β π ) ) ) ) |
165 |
164
|
com14 |
β’ ( ( [ π / π ] [ πΈ / π ] π β§ π = ( β― β π ) ) β ( π β β0 β ( π = ( β― β π ) β ( πΏ β€ ( β― β π ) β π ) ) ) ) |
166 |
165
|
expcom |
β’ ( π = ( β― β π ) β ( [ π / π ] [ πΈ / π ] π β ( π β β0 β ( π = ( β― β π ) β ( πΏ β€ ( β― β π ) β π ) ) ) ) ) |
167 |
166
|
com24 |
β’ ( π = ( β― β π ) β ( π = ( β― β π ) β ( π β β0 β ( [ π / π ] [ πΈ / π ] π β ( πΏ β€ ( β― β π ) β π ) ) ) ) ) |
168 |
167
|
pm2.43i |
β’ ( π = ( β― β π ) β ( π β β0 β ( [ π / π ] [ πΈ / π ] π β ( πΏ β€ ( β― β π ) β π ) ) ) ) |
169 |
168
|
imp |
β’ ( ( π = ( β― β π ) β§ π β β0 ) β ( [ π / π ] [ πΈ / π ] π β ( πΏ β€ ( β― β π ) β π ) ) ) |
170 |
169
|
exlimiv |
β’ ( β π ( π = ( β― β π ) β§ π β β0 ) β ( [ π / π ] [ πΈ / π ] π β ( πΏ β€ ( β― β π ) β π ) ) ) |
171 |
9 170
|
sylbi |
β’ ( ( β― β π ) β β0 β ( [ π / π ] [ πΈ / π ] π β ( πΏ β€ ( β― β π ) β π ) ) ) |
172 |
|
hashcl |
β’ ( π β Fin β ( β― β π ) β β0 ) |
173 |
171 172
|
syl11 |
β’ ( [ π / π ] [ πΈ / π ] π β ( π β Fin β ( πΏ β€ ( β― β π ) β π ) ) ) |
174 |
173
|
3imp |
β’ ( ( [ π / π ] [ πΈ / π ] π β§ π β Fin β§ πΏ β€ ( β― β π ) ) β π ) |