Step |
Hyp |
Ref |
Expression |
1 |
|
ficardadju |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
3 |
2
|
ensymd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
4 |
|
endjudisj |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
5 |
|
entr |
⊢ ( ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
7 |
|
carden2b |
⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
9 |
|
ficardom |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |
10 |
|
ficardom |
⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) |
11 |
|
nnacl |
⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω ) |
12 |
|
cardnn |
⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
14 |
9 10 13
|
syl2an |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
16 |
8 15
|
eqtr3d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |