Step |
Hyp |
Ref |
Expression |
1 |
|
undjudom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
2 |
|
ficardadju |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
3 |
|
domentr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
5 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
6 |
|
finnum |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
8 |
|
ficardom |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |
9 |
|
ficardom |
⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) |
10 |
|
nnacl |
⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω ) |
12 |
|
nnon |
⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ On ) |
13 |
|
onenon |
⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ On → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card ) |
14 |
11 12 13
|
3syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card ) |
15 |
|
carddom2 |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ dom card ∧ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card ) → ( ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) |
16 |
7 14 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) |
17 |
4 16
|
mpbird |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) |
18 |
|
cardnn |
⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
19 |
11 18
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
20 |
17 19
|
sseqtrd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |