Metamath Proof Explorer


Theorem ficardun2

Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013) Avoid ax-rep . (Revised by BTernaryTau, 3-Jul-2024)

Ref Expression
Assertion ficardun2 ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴𝐵 ) ) ⊆ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 undjudom ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )
2 ficardadju ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) )
3 domentr ( ( ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) → ( 𝐴𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) )
4 1 2 3 syl2anc ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) )
5 unfi ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴𝐵 ) ∈ Fin )
6 finnum ( ( 𝐴𝐵 ) ∈ Fin → ( 𝐴𝐵 ) ∈ dom card )
7 5 6 syl ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴𝐵 ) ∈ dom card )
8 ficardom ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω )
9 ficardom ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω )
10 nnacl ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω )
11 8 9 10 syl2an ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω )
12 nnon ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ On )
13 onenon ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ On → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card )
14 11 12 13 3syl ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card )
15 carddom2 ( ( ( 𝐴𝐵 ) ∈ dom card ∧ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card ) → ( ( card ‘ ( 𝐴𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ↔ ( 𝐴𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) )
16 7 14 15 syl2anc ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ ( 𝐴𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ↔ ( 𝐴𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) )
17 4 16 mpbird ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) )
18 cardnn ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) )
19 11 18 syl ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) )
20 17 19 sseqtrd ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴𝐵 ) ) ⊆ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) )