| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fidmfisupp.1 | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ 𝑅 ) | 
						
							| 2 |  | fidmfisupp.2 | ⊢ ( 𝜑  →  𝐷  ∈  Fin ) | 
						
							| 3 |  | fidmfisupp.3 | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 4 | 1 2 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 5 |  | suppimacnv | ⊢ ( ( 𝐹  ∈  V  ∧  𝑍  ∈  𝑉 )  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 6 | 4 3 5 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 7 | 2 1 | fisuppfi | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) )  ∈  Fin ) | 
						
							| 8 | 6 7 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  ∈  Fin ) | 
						
							| 9 | 1 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 10 |  | funisfsupp | ⊢ ( ( Fun  𝐹  ∧  𝐹  ∈  V  ∧  𝑍  ∈  𝑉 )  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 11 | 9 4 3 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 12 | 8 11 | mpbird | ⊢ ( 𝜑  →  𝐹  finSupp  𝑍 ) |