Step |
Hyp |
Ref |
Expression |
1 |
|
fidmfisupp.1 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) |
2 |
|
fidmfisupp.2 |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
3 |
|
fidmfisupp.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
4 |
1 2
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
5 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
6 |
4 3 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
7 |
2 1
|
fisuppfi |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
8 |
6 7
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
9 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
10 |
|
funisfsupp |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
11 |
9 4 3 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
12 |
8 11
|
mpbird |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |