Metamath Proof Explorer


Theorem fidmfisupp

Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses fidmfisupp.1 ( 𝜑𝐹 : 𝐷𝑅 )
fidmfisupp.2 ( 𝜑𝐷 ∈ Fin )
fidmfisupp.3 ( 𝜑𝑍𝑉 )
Assertion fidmfisupp ( 𝜑𝐹 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fidmfisupp.1 ( 𝜑𝐹 : 𝐷𝑅 )
2 fidmfisupp.2 ( 𝜑𝐷 ∈ Fin )
3 fidmfisupp.3 ( 𝜑𝑍𝑉 )
4 fex ( ( 𝐹 : 𝐷𝑅𝐷 ∈ Fin ) → 𝐹 ∈ V )
5 1 2 4 syl2anc ( 𝜑𝐹 ∈ V )
6 suppimacnv ( ( 𝐹 ∈ V ∧ 𝑍𝑉 ) → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
7 5 3 6 syl2anc ( 𝜑 → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
8 2 1 fisuppfi ( 𝜑 → ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin )
9 7 8 eqeltrd ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin )
10 1 ffund ( 𝜑 → Fun 𝐹 )
11 funisfsupp ( ( Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑉 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) )
12 10 5 3 11 syl3anc ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) )
13 9 12 mpbird ( 𝜑𝐹 finSupp 𝑍 )