Step |
Hyp |
Ref |
Expression |
1 |
|
fidomndrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
3 |
2
|
adantl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → 𝑅 ∈ Ring ) |
4 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
5 |
4
|
adantl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → 𝑅 ∈ NzRing ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
8 |
6 7
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
9 |
5 8
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
10 |
9
|
neneqd |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ¬ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
12 |
11 7 6
|
0unit |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
13 |
3 12
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
14 |
10 13
|
mtbird |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
15 |
|
disjsn |
⊢ ( ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ↔ ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
16 |
14 15
|
sylibr |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ) |
17 |
1 11
|
unitss |
⊢ ( Unit ‘ 𝑅 ) ⊆ 𝐵 |
18 |
|
reldisj |
⊢ ( ( Unit ‘ 𝑅 ) ⊆ 𝐵 → ( ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ↔ ( Unit ‘ 𝑅 ) ⊆ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ↔ ( Unit ‘ 𝑅 ) ⊆ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
20 |
16 19
|
sylib |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( Unit ‘ 𝑅 ) ⊆ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
21 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
23 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑅 ∈ Domn ) |
24 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝐵 ∈ Fin ) |
25 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
26 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
27 |
1 7 6 21 22 23 24 25 26
|
fidomndrnglem |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
28 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
29 |
28 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
30 |
28 7
|
oppr0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
31 |
28 6
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
32 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
33 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
34 |
28
|
opprdomn |
⊢ ( 𝑅 ∈ Domn → ( oppr ‘ 𝑅 ) ∈ Domn ) |
35 |
23 34
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → ( oppr ‘ 𝑅 ) ∈ Domn ) |
36 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
37 |
29 30 31 32 33 35 24 25 36
|
fidomndrnglem |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
38 |
11 6 21 28 32
|
isunit |
⊢ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
39 |
27 37 38
|
sylanbrc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
40 |
20 39
|
eqelssd |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
41 |
1 11 7
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
42 |
3 40 41
|
sylanbrc |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → 𝑅 ∈ DivRing ) |
43 |
42
|
ex |
⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ Domn → 𝑅 ∈ DivRing ) ) |
44 |
|
drngdomn |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) |
45 |
43 44
|
impbid1 |
⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing ) ) |