| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fidomndrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
fidomndrng.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
fidomndrng.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
fidomndrng.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 5 |
|
fidomndrng.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
fidomndrng.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 7 |
|
fidomndrng.x |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 8 |
|
fidomndrng.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 9 |
|
fidomndrng.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) |
| 10 |
8
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 11 |
|
eldifsni |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 0 } ) → 𝐴 ≠ 0 ) |
| 12 |
8 11
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → 𝐴 ≠ 0 ) |
| 14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 15 |
|
ovex |
⊢ ( 𝑦 · 𝐴 ) ∈ V |
| 16 |
14 9 15
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 𝐴 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 𝐴 ) ) |
| 18 |
17
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑅 ∈ Domn ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 21 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
| 22 |
1 5 2
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑦 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) ) |
| 23 |
19 20 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) ) |
| 24 |
18 23
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 ↔ ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) |
| 26 |
25
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → ( ¬ 𝑦 = 0 → 𝐴 = 0 ) ) |
| 27 |
26
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → ( 𝐴 ≠ 0 → 𝑦 = 0 ) ) |
| 28 |
13 27
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → 𝑦 = 0 ) |
| 29 |
28
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) |
| 30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) |
| 31 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
| 32 |
6 31
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 33 |
1 5
|
ringrghm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 34 |
32 10 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 35 |
9 34
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 36 |
1 1 2 2
|
ghmf1 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑅 ) → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 38 |
30 37
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐵 ) |
| 39 |
|
enreffi |
⊢ ( 𝐵 ∈ Fin → 𝐵 ≈ 𝐵 ) |
| 40 |
7 39
|
syl |
⊢ ( 𝜑 → 𝐵 ≈ 𝐵 ) |
| 41 |
|
f1finf1o |
⊢ ( ( 𝐵 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ) |
| 42 |
40 7 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ) |
| 43 |
38 42
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 44 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 45 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
| 46 |
43 44 45
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
| 47 |
1 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 48 |
32 47
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 49 |
46 48
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 50 |
1 4 5
|
dvdsrmul |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 1 ) ∈ 𝐵 ) → 𝐴 ∥ ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 51 |
10 49 50
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∥ ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 52 |
|
oveq1 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 1 ) → ( 𝑦 · 𝐴 ) = ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 53 |
14
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 · 𝐴 ) ) |
| 54 |
9 53
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 · 𝐴 ) ) |
| 55 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ∈ V |
| 56 |
52 54 55
|
fvmpt |
⊢ ( ( ◡ 𝐹 ‘ 1 ) ∈ 𝐵 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 57 |
49 56
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 58 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 1 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = 1 ) |
| 59 |
43 48 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = 1 ) |
| 60 |
57 59
|
eqtr3d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) = 1 ) |
| 61 |
51 60
|
breqtrd |
⊢ ( 𝜑 → 𝐴 ∥ 1 ) |