| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domnsym | ⊢ ( 𝐴  ≼  𝐵  →  ¬  𝐵  ≺  𝐴 ) | 
						
							| 2 |  | sdomdom | ⊢ ( 𝐴  ≺  𝐵  →  𝐴  ≼  𝐵 ) | 
						
							| 3 | 2 | con3i | ⊢ ( ¬  𝐴  ≼  𝐵  →  ¬  𝐴  ≺  𝐵 ) | 
						
							| 4 |  | fidomtri | ⊢ ( ( 𝐵  ∈  Fin  ∧  𝐴  ∈  𝑉 )  →  ( 𝐵  ≼  𝐴  ↔  ¬  𝐴  ≺  𝐵 ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin )  →  ( 𝐵  ≼  𝐴  ↔  ¬  𝐴  ≺  𝐵 ) ) | 
						
							| 6 | 3 5 | imbitrrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin )  →  ( ¬  𝐴  ≼  𝐵  →  𝐵  ≼  𝐴 ) ) | 
						
							| 7 |  | ensym | ⊢ ( 𝐵  ≈  𝐴  →  𝐴  ≈  𝐵 ) | 
						
							| 8 |  | endom | ⊢ ( 𝐴  ≈  𝐵  →  𝐴  ≼  𝐵 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐵  ≈  𝐴  →  𝐴  ≼  𝐵 ) | 
						
							| 10 | 9 | con3i | ⊢ ( ¬  𝐴  ≼  𝐵  →  ¬  𝐵  ≈  𝐴 ) | 
						
							| 11 | 6 10 | jca2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin )  →  ( ¬  𝐴  ≼  𝐵  →  ( 𝐵  ≼  𝐴  ∧  ¬  𝐵  ≈  𝐴 ) ) ) | 
						
							| 12 |  | brsdom | ⊢ ( 𝐵  ≺  𝐴  ↔  ( 𝐵  ≼  𝐴  ∧  ¬  𝐵  ≈  𝐴 ) ) | 
						
							| 13 | 11 12 | imbitrrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin )  →  ( ¬  𝐴  ≼  𝐵  →  𝐵  ≺  𝐴 ) ) | 
						
							| 14 | 13 | con1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin )  →  ( ¬  𝐵  ≺  𝐴  →  𝐴  ≼  𝐵 ) ) | 
						
							| 15 | 1 14 | impbid2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin )  →  ( 𝐴  ≼  𝐵  ↔  ¬  𝐵  ≺  𝐴 ) ) |