Step |
Hyp |
Ref |
Expression |
1 |
|
fifo.1 |
⊢ 𝐹 = ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) |
2 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) → 𝑦 ≠ ∅ ) |
3 |
|
intex |
⊢ ( 𝑦 ≠ ∅ ↔ ∩ 𝑦 ∈ V ) |
4 |
2 3
|
sylib |
⊢ ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) → ∩ 𝑦 ∈ V ) |
5 |
4
|
rgen |
⊢ ∀ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑦 ∈ V |
6 |
1
|
fnmpt |
⊢ ( ∀ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑦 ∈ V → 𝐹 Fn ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
7 |
5 6
|
mp1i |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Fn ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
8 |
|
dffn4 |
⊢ ( 𝐹 Fn ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↔ 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) |
9 |
7 8
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) |
10 |
|
elfi2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( fi ‘ 𝐴 ) ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) 𝑥 = ∩ 𝑦 ) ) |
11 |
1
|
elrnmpt |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) 𝑥 = ∩ 𝑦 ) ) |
12 |
11
|
elv |
⊢ ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) 𝑥 = ∩ 𝑦 ) |
13 |
10 12
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( fi ‘ 𝐴 ) ↔ 𝑥 ∈ ran 𝐹 ) ) |
14 |
13
|
eqrdv |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ran 𝐹 ) |
15 |
|
foeq3 |
⊢ ( ( fi ‘ 𝐴 ) = ran 𝐹 → ( 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ↔ 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ↔ 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) ) |
17 |
9 16
|
mpbird |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |