Metamath Proof Explorer


Theorem fiidomfld

Description: A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis fidomndrng.b 𝐵 = ( Base ‘ 𝑅 )
Assertion fiidomfld ( 𝐵 ∈ Fin → ( 𝑅 ∈ IDomn ↔ 𝑅 ∈ Field ) )

Proof

Step Hyp Ref Expression
1 fidomndrng.b 𝐵 = ( Base ‘ 𝑅 )
2 1 fidomndrng ( 𝐵 ∈ Fin → ( 𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing ) )
3 2 anbi2d ( 𝐵 ∈ Fin → ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ DivRing ) ) )
4 isidom ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) )
5 isfld ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) )
6 5 biancomi ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ DivRing ) )
7 3 4 6 3bitr4g ( 𝐵 ∈ Fin → ( 𝑅 ∈ IDomn ↔ 𝑅 ∈ Field ) )