Description: A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fidomndrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
Assertion | fiidomfld | ⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ IDomn ↔ 𝑅 ∈ Field ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidomndrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | 1 | fidomndrng | ⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing ) ) |
3 | 2 | anbi2d | ⊢ ( 𝐵 ∈ Fin → ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ DivRing ) ) ) |
4 | isidom | ⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) | |
5 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
6 | 5 | biancomi | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ DivRing ) ) |
7 | 3 4 6 | 3bitr4g | ⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ IDomn ↔ 𝑅 ∈ Field ) ) |